浙江电力

2014, v.33;No.219(07) 20-23

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于卡尔曼滤波的短期负荷多步预测修正模型研究
Study on Modified Model for Multi-step Forecasting of Short-term load Based on Kalman Filter

翟玮星
ZHAI Weixing

摘要(Abstract):

提出了一种短期负荷多步预测的修正方法。首先采用BP神经网络法建立短期负荷的分时多步预测模型,对于每一个初始预测值,采用卡尔曼滤波模型进行修正,以减少模型的累积误差,提高多步预测的效果。算例结果证明了所提方法不仅能够提高单步预测的预测效果,而且能够有效降低多步预测的误差,对于实现连续日短期负荷预测具有现实意义。
This paper proposes a modified method for multi-step forecasting of short-term load. Firstly, the BP neural network method is adopted to establish time-sharing and multi-step forecasting model of short-term load; then Kalman filter model is utilized to modify each initial forecast value to reduce the cumulative error of the model and improve multi-step forecasting. The calculation example result demonstrates that the proposed method can not only improve forecasting of single-step forecasting but effectively reduce multi-step forecasting errors; it is of operation significance for consecutive daily short-term load forecasting.

关键词(KeyWords): 卡尔曼滤波;短期负荷;多步预测;累积误差;BP神经网络
Kalman filter;short-term load;multi-step forecasting;cumulative error;BP neural network

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 翟玮星
ZHAI Weixing

DOI: 10.19585/j.zjdl.2014.07.005

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享