浙江电力

2025, v.44;No.352(08) 119-127

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于渐进式特征优化与融合策略的变电站设备缺陷检测
Substation equipment defect detection based on progressive feature optimization and fusion strategy

毛万登,刘善峰,张琦,鲍华
MAO Wandeng,LIU Shanfeng,ZHANG Qi,BAO Hua

摘要(Abstract):

现有的变电站设备缺陷检测算法存在复杂场景下难以完整检测不同尺度目标、检测结果边界模糊等问题。为此,提出一种基于渐进式特征优化与融合策略的变电站设备缺陷检测方法,通过加强缺陷主体部分特征的学习,优化缺陷主体信息并弱化背景信息,将缺陷主体从复杂背景中分离。首先,引入注意力机制,从空间和通道两方面自适应学习并优化复杂背景中的缺陷特征。其次,采用层次化特征交互策略整合高级语义信息,引导后续各层特征的有效融合。接着,利用渐进式空洞融合模块有效聚合多尺度特征。最后,在构建的SEAD(变电站设备缺陷数据集)上进行对比实验,结果显示,所提方法在SEAD上MAE(平均绝对误差)为0.007 0,F-measure(F度量)为0.962 8,相较于其他方法具有显著的优势。
Current substation equipment anomaly detection methods struggle with incomplete multi-scale target detection and boundary ambiguity in complex scenarios. To address these limitations, this study proposes an anomaly detection method by employing a progressive feature optimization and fusion strategy. This method enhances the learning of features related to anomaly subjects and optimizes the information of anomaly subjects while reducing the influence of background information, effectively separating anomaly subjects from complex backgrounds. Firstly, an attention mechanism is introduced to adaptively learn and optimize anomaly features in complex backgrounds from both spatial and channel dimensions. Secondly, a hierarchical feature interaction strategy is employed to integrate high-level semantic information to guide the effective fusion of features across subsequent layers. Finally, a progressive dilated fusion module is employed to effectively aggregate multi-scale features. Comparative experiments conducted on the newly developed substation equipment anomaly dataset(SEAD) demonstrate the superior performance of the method, achieving a mean absolute error(MAE) of 0.007 0 and F-measure, a similarity metric, of 0.962 8.

关键词(KeyWords): 缺陷检测;显著性目标检测;多尺度信息融合;渐进式融合
anomaly detection;salient object detection;multi-scale information fusion;progressive fusion

Abstract:

Keywords:

基金项目(Foundation): 安徽省自然科学基金面上项目(1908085MF217);; 安徽省教育厅重点项目(2023AH050085)

作者(Author): 毛万登,刘善峰,张琦,鲍华
MAO Wandeng,LIU Shanfeng,ZHANG Qi,BAO Hua

DOI: 10.19585/j.zjdl.202508012

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享