基于M-BigST的电力系统频率预测方法A power system frequency prediction method based on M-BigST
汪旸,董向明,张越,陈钟钟,乔咏田,杨丘帆,姜涛
WANG Yang,DONG Xiangming,ZHANG Yue,CHEN Zhongzhong,QIAO Yongtian,YANG Qiufan,JIANG Tao
摘要(Abstract):
针对传统电力系统频率分析方法存在计算复杂度高、建模难度大及计算精度与效率难以平衡等问题,提出了一种基于M-BigST(改进的BigST)的电力系统频率预测方法。首先,基于块级动态图学习模块与线性空间卷积层挖掘电网拓扑结构所蕴含的空间关联特征,提取节点间的局部依赖关系并生成高维语义信息。然后,通过滑动卷积核精准捕捉系统频率在时间尺度上的局部依赖关系与短期动态特征,兼顾时序特征和空间特征构建系统频率预测模型。最后,采用某地区电网实际数据进行验证,结果表明,与其他算法相比,所提系统频率预测方法在预测准确性和鲁棒性方面具有显著优势。
To solve the problems of high computational complexity, modeling difficulty, and the challenge of balancing accuracy with efficiency in conventional power system frequency analysis methods, this paper proposes a frequency prediction method based on M-BigST(modified BigST). Firstly, a block-level dynamic graph learning module and a linear spatial convolutional layer are employed to extract spatial correlation features embedded in the power grid topology, capturing local dependencies among nodes and generating high-dimensional spatial semantic information. Then, sliding convolution kernels are used to accurately capture the local temporal dependencies and short-term dynamic characteristics of system frequency, enabling a frequency prediction model that jointly considers temporal and spatial features. Finally, actual grid operation data from a certain region are used for validation. The results show that, compared with other methods, the proposed method offers significant advantages in prediction accuracy and robustness.
关键词(KeyWords):
电力系统频率;改进的BigST;时序预测;网络拓扑;系统频率预测
power system frequency;M-BigST;temporal prediction;network topology;system frequency prediction
基金项目(Foundation): 国家电网有限公司总部科技项目(5100-202404010A-1-1-ZN)
作者(Author):
汪旸,董向明,张越,陈钟钟,乔咏田,杨丘帆,姜涛
WANG Yang,DONG Xiangming,ZHANG Yue,CHEN Zhongzhong,QIAO Yongtian,YANG Qiufan,JIANG Tao
DOI: 10.19585/j.zjdl.202512002
参考文献(References):
- [1]邓贤哲,姚伟,黄伟,等.基于自适应时间窗的数据-模型融合驱动暂态频率预测[J].电网技术,2024,48(4):1551-1564.DENG Xianzhe,YAO Wei,HUANG Wei,et al. Transient frequency prediction driven by data-model fusion based on adaptive time window[J].Power System Technology,2024,48(4):1551-1564.
- [2]李兆伟,吴雪莲,庄侃沁,等.“9·19”锦苏直流双极闭锁事故华东电网频率特性分析及思考[J].电力系统自动化,2017,41(7):149-155.LI Zhaowei,WU Xuelian,ZHUANG Kanqin,et al.Analysis and reflection on frequency characteristics of East China grid after bipolar locking of“9·19” Jinping-Sunan DC transmission line[J]. Automation of Electric Power Systems,2017,41(7):149-155.
- [3]曾辉,孙峰,李铁,等.澳大利亚“9·28”大停电事故分析及对中国启示[J].电力系统自动化,2017,41(13):1-6.ZENG Hui,SUN Feng,LI Tie,et al.Analysis of“9·28”blackout in south Australia and its enlightenment to China[J]. Automation of Electric Power Systems,2017,41(13):1-6.
- [4]BORI??I??A,TORRES J L R,POPOV M.Fundamental study on the influence of dynamic load and distributed energy resources on power system short-term voltage stability[J].International Journal of Electrical Power&Energy Systems,2021,131:107141.
- [5]刘其泳,于之虹,张璐路,等.基于惯量比的电网频率支撑能力在线评估方法[J].电网技术,2023,47(2):493-502.LIU Qiyong,YU Zhihong,ZHANG Lulu,et al.Online frequency support capacity assessment of power grid based on inertia ratio[J]. Power System Technology,2023,47(2):493-502.
- [6]周一辰,杨洋,李永刚,等.区域一致趋同的分布式负荷频率控制方法研究[J].智慧电力,2024(3):80-86.ZHOU Yichen,YANG Yang,LI Yonggang,et al.Distributed load frequency control method in a regionally consistent manner[J].Smart Power,2024(3):80-86.
- [7]付卓铭,胡俊杰,马文帅,等.规模化电动汽车参与电力系统二次调频研究综述[J].电力建设,2023,44(2):1-14.FU Zhuoming,HU Junjie,MA Wenshuai,et al.Review of research on participation of numerous electric vehicles in power system secondary frequency-regulation service[J].Electric Power Construction,2023,44(2):1-14.
- [8]叶希,徐韵扬,朱童,等.计及新能源低穿影响的系统频率响应模型[J].电网与清洁能源,2024,40(11):120-128.YE Xi,XU Yunyang,ZHU Tong,et al. A system frequency response model considering impacts of new energy’s LVRT[J].Power System and Clean Energy,2024,40(11):120-128.
- [9]李登峰,张澳归,刘育明,等.考虑设备安全的新能源场站参与电网频率协调控制方法[J].智慧电力,2023,51(9):8-15.LI Dengfeng,ZHANG Aogui,LIU Yuming,et al. Frequency coordination control method of power system contained renewable energy stations considering equipment safety[J].Smart Power,2023,51(9):8-15.
- [10]马睿聪,刘福锁,曹永吉,等.电力系统频率动态与功角振荡的耦合特性分析[J].电力工程技术,2023,42(4):102-112.MA Ruicong,LIU Fusuo,CAO Yongji,et al. Coupling characteristic analysis of power system frequency dynamic and power angle oscillation[J]. Electric Power Engineering Technology,2023,42(4):102-112.
- [11]于琳琳,王泽,郝元钊,等.基于XGBoost的电力系统动态频率响应曲线预测方法[J].电力建设,2023,44(4):74-81.YU Linlin,WANG Ze,HAO Yuanzhao,et al.XGBoostbased power system dynamic frequency-response curve prediction[J].Electric Power Construction,2023,44(4):74-81.
- [12]刘泽健,杨苹,林旭,等.基于海上风力发电机组中虚拟飞轮储能系统的频率支撑协调控制策略[J].智慧电力,2024(2):101-107.LIU Zejian,YANG Ping,LIN Xu,et al.Coordination control strategy for frequency support based on virtual flywheel energy storage system in offshore wind turbines[J].Smart Power,2024(2):101-107.
- [13]雷傲宇,苏婷婷,梅勇,等.基于分频器理论的新能源电网暂态频率稳定分析方法[J].电测与仪表,2024,61(4):132-140.LEI Aoyu,SU Tingting,MEI Yong,et al.A transient frequency stability analysis method for new energy grid based on frequency divider theory[J].Electrical Measurement&Instrumentation,2024,61(4):132-140.
- [14]刘育明,张澳归,李小菊,等.基于控切配合的高比例风电电力系统紧急频率控制方法[J].智慧电力,2023,51(7):9-15.LIU Yuming,ZHANG Aogui,LI Xiaoju,et al.Emergency frequency control method of high proportion wind power system based on control switching coordination[J].Smart Power,2023,51(7):9-15.
- [15]贾惠彬,李明舒,张国云.一种基于图论剪枝算法的多分支配电网行波故障定位算法[J].电测与仪表,2017,54(1):27-32.JIA Huibin,LI Mingshu,ZHANG Guoyun. A traveling wave fault location method for distribution network based on pruning algorithm and graph theory[J].Electrical Measurement&Instrumentation,2017,54(1):27-32.
- [16]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
- [17]ANDERSON P M,MIRHEYDAR M.A low-order system frequency response model[J].IEEE Transactions on Power Systems,1990,5(3):720-729.
- [18]李常刚,刘玉田,张恒旭,等.基于直流潮流的电力系统频率响应分析方法[J].中国电机工程学报,2009,29(34):36-41.LI Changgang,LIU Yutian,ZHANG Hengxu,et al.Power system frequency response analysis based on the direct current loadflow[J].Proceedings of the CSEE,2009,29(34):36-41.
- [19]仉怡超,闻达,王晓茹,等.基于深度置信网络的电力系统扰动后频率曲线预测[J].中国电机工程学报,2019,39(17):5095-5104.ZHANG Yichao,WEN Da,WANG Xiaoru,et al. A method of frequency curve prediction based on deep belief network of post-disturbance power system[J].Proceedings of the CSEE,2019,39(17):5095-5104.
- [20]符杨,张语涵,田书欣,等.基于混合量测的新能源电力系统动态频率预测方法[J].中国电机工程学报,2024,44(5):1823-1836.FU Yang,ZHANG Yuhan,TIAN Shuxin,et al.Dynamic frequency prediction based on mixed measurement for new energy power system[J].Proceedings of the CSEE,2024,44(5):1823-1836.
- [21]石访,张林林,胡熊伟,等.基于多属性决策树的电网暂态稳定规则提取方法[J].电工技术学报,2019,34(11):2364-2374.SHI Fang,ZHANG Linlin,HU Xiongwei,et al. Power system transient stability rules extraction based on multiattribute decision tree[J]. Transactions of China Electrotechnical Society,2019,34(11):2364-2374.
- [22]马良玉,程善珍.基于支持向量数据描述和XGBoost的风电机组异常工况预警研究[J].电工技术学报,2022,37(13):3241-3249.MA Liangyu,CHENG Shanzhen. Abnormal state early warning of wind turbine generator based on support vector data description and XGBoost[J]. Transactions of China Electrotechnical Society,2022,37(13):3241-3249.
- [23]叶瑞丽,郭志忠,刘瑞叶,等.基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J].电工技术学报,2017,32(21):103-111.YE Ruili,GUO Zhizhong,LIU Ruiye,et al. Wind speed and wind power forecasting method based on wavelet packet decomposition and improved Elman neural network[J].Transactions of China Electrotechnical Society,2017,32(21):103-111.
- [24]崔昊,冯双,陈佳宁,等.基于自编码器与长短期记忆网络的宽频振荡广域定位方法[J].电力系统自动化,2022,46(12):194-201.CUI Hao,FENG Shuang,CHEN Jianing,et al.Wide-area location method of wide-band oscillations based on autoencoder and long short-term memory network[J]. Automation of Electric Power Systems,2022,46(12):194-201.
- [25]王彦博,吴俊勇,季佳伸,等.基于深度残差收缩网络的电力系统暂态频率安全集成评估[J].电网技术,2023,47(2):482-494.WANG Yanbo,WU Junyong,JI Jiashen,et al.Integrated assessment of power system transient frequency security based on deep residual shrinkage network[J].Power System Technology,2023,47(2):482-494.
- [26]LECUN Y,BOTTOU L,BENGIO Y,et al. Gradientbased learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
- [27]时纯,刘君,梁卓航,等.基于GAN和多通道CNN的电力系统暂态稳定评估[J].电网技术,2022,46(8):3191-3202.SHI Chun,LIU Jun,LIANG Zhuohang,et al. Transient stability assessment of power system based on GAN and multi-channel CNN[J].Power System Technology,2022,46(8):3191-3202.
- [28]王铮澄,周艳真,郭庆来,等.考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J].中国电机工程学报,2021,41(7):2341-2350.WANG Zhengcheng,ZHOU Yanzhen,GUO Qinglai,et al.Transient stability assessment of power system considering topological change:a message passing neural network-based approach[J]. Proceedings of the CSEE,2021,41(7):2341-2350.
- [29]XIE J,SUN W. A transfer and deep learning-based method for online frequency stability assessment and control[J].IEEE Access,2021,9:75712-75721.
- [30]ZHAN X W,HAN S,RONG N,et al.A Two-Stage transient stability prediction method using convolutional residual memory network and gated recurrent unit[J].International Journal of Electrical Power&Energy Systems,2022,138:107973.
- [31]张峻凯,胡旭光,刘要博,等.基于动态关联图注意力网络的虚拟电厂居民短期负荷预测[J].电力系统自动化,2024,48(21):120-128.ZHANG Junkai,HU Xuguang,LIU Yaobo,et al. Shortterm residential load forecasting based on dynamic association graph attention networks for virtual power plant[J].Automation of Electric Power Systems,2024,48(21):120-128.
- [32]HAN J D,ZHANG W J,LIU H,et al.BigST:linear complexity spatio-temporal graph neural network for traffic forecasting on large-scale road networks[J]. Proceedings of the VLDB Endowment,2024,17(5):1081-1090.
- [33]HE M Z,HE F,LIU F H,et al.Random Fourier features for asymmetric kernels[EB/OL].2022:arXiv:2209.08461.https://arxiv.org/abs/2209.08461.
- 电力系统频率
- 改进的BigST
- 时序预测
- 网络拓扑
- 系统频率预测
power system frequency - M-BigST
- temporal prediction
- network topology
- system frequency prediction