微燃机冷热电三联供系统建模及热力学分析Modeling and Thermodynamic Analysis of the CCHP System Based on Micro Gas Turbine
谢娜,韩高岩,吕洪坤,国旭涛,孙五一,刘虎
XIE Na,HAN Gaoyan,LYU Hongkun,GUO Xutao,SUN Wuyi,LIU Hu
摘要(Abstract):
某200 k W微燃机冷热电三联供系统按季节负荷特点分为热电联供和冷电联供2种模式,基于Ebsilon软件对该系统构建模型并进行仿真模拟及性能分析,分别计算出不同工况下冷热电三联供系统的一次能源利用率和效率。结果表明:冷电联供时,环境温度从24℃变化到38℃,系统一次能源利用率为65.2%~68%;热电联供时,环境温度从-10℃变化到24℃,系统一次能源利用率为66.4%~74.2%。系统冷电联供(取环境温度为32℃)运行时,效率为31.1%,损失之和为451.92 kW,当微燃机负荷率在30%~100%变化,系统一次能源利用率为60.3%~66.9%;系统热电联供(取环境温度为0℃)运行时,效率为38.5%,损失之和为408.4 kW,当微燃机负荷率在30%~100%变化,系统一次能源利用率为54.4%~68.5%。通过搭建的微燃机三联供系统模型对实际运行数据进行分析,结果认为:实际运行工况主要存在冷负荷较小的问题,通过蓄冷罐蓄存多余冷量,系统的一次能源利用率可提高13.8%。
According to the seasonal load characteristics, the CCHP(combined cooling heating and power)system based on 200 kW micro gas turbine comprises two modes, HP(heating and power) and CP(cooling and power). Ebsilon is used for system modeling, simulation and performance analysis to calculate the primary energy ratio and exergy efficiency under different conditions. The results show that in cooling and power supply mode when the ambient temperature changes from 24 ℃ to 38 ℃, the primary energy utilization ratio of the system varies from 65.2% to 68%; in heating and power supply mode when the ambient temperature changes from-10 ℃ to 24 ℃, the primary energy utilization ratio of the system varies from 66.4% to 74.2%;in the cooling and power supply mode with the ambient temperature of 32 ℃, the exergy efficiency is 31.1%,and the sum of exergy loss is 451.92 kW, and when the load rate of micro gas turbine changes in the range of30%~100%, the primary energy utilization ratio of the system is 60.3%~66.9%; when the system operates in the heating and power supply mode with the ambient temperature of 0 ℃, the exergy efficiency is 38.5%, and the sum of exergy loss is 408.4 kW, and when the load rate of micro gas turbine changes in the range of 30%~100%, the primary energy utilization ratio of the system is 54.4%~68.5%. By analysis of actual operation data based on the model of micro gas turbine triple supply system, it is found that the cooling load is relatively small in the actual operating condition, and by storing the excess cooling energy in the storage tank, the primary energy ratio of the system can be increased by 13.8%.
关键词(KeyWords):
微型燃气轮机;冷热电三联供;Ebsilon;一次能源利用率;效率
micro gas turbine;CCHP;Ebsilon;primary energy utilization ratio;exergy efficiency
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS180036)
作者(Author):
谢娜,韩高岩,吕洪坤,国旭涛,孙五一,刘虎
XIE Na,HAN Gaoyan,LYU Hongkun,GUO Xutao,SUN Wuyi,LIU Hu
DOI: 10.19585/j.zjdl.202004015
参考文献(References):
- [1]赵建瑸,赵建平.分布式能源发展及存在问题分析[J].内蒙古石油化工,2014(23):19-21.
- [2]韩高岩,吕洪坤,蔡洁聪,等.燃气冷热电三联供发展现状及前景展望[J].浙江电力,2019,38(1):18-24.
- [3]张淳军.分布式能源系统中的冷热电联供系统的建模、优化与控制[D].济南:山东建筑大学,2016.
- [4]黄河清,沈致和,吴亚平.分布式能源站系统仿真研究[J].制冷与空调,2016(30):9-14.
- [5]秦朝葵,李伟奇,谢卫华,等.微燃机天然气冷热电三联供系统热力学分析[J].天然气工业,2008,28(1):129-131.
- [6]史航,许运礼.分布式能源系统的热力学分析[J].科技信息,2011(19):349-350.
- [7]郭中旭.基于供热机组负荷特性的吸收式热泵变工况分析[D].北京:华北电力大学,2017.
- [8]陈强.分布式冷热电联供系统全工况特性与主动调控机理及方法[D].北京:中国科学院大学,2014.
- [9]叶琪超,楼可炜,张宝,等.多能互补综合能源系统设计及优化[J].浙江电力,2018,37(7):5-12.
- [10]高赛赛,张雪梅,郭甲生,等.分布式能源系统的评价方法[J].煤气与热力,2018(1):1-3.
- [11]林世平,李先瑞,陈斌.燃气冷热电分布式能源技术应用手册[M].北京:中国电力出版社,2014.
- [12]能量系统分析技术导则:GB/T 14909-2005[S].北京:中国标准出版社,2005.
- [13]王树成,付忠广,张高强,等.基于先进分析方法的燃气-蒸汽联合循环损分析[J].热力发电,2019,48(3):75-79.
- [14]杨承,杨泽亮,蔡睿贤.广东地区电站燃气轮机进气冷却潜力的初步分析[J].燃机轮机技术,2003,16(2):18-20.
- [15]黄庆河,曹连华,蔡宇.水蓄冷技术在数据中心的应用研究[J].暖通空调,2016,46(10):1-4.
- [16]吴志湘,贾云飞,周敏.影响水蓄冷罐效率的因素分析——以某能源中心测试为例[J].建筑节能,2 018(9):59-63.