浙江电力

2026, v.45;No.357(01) 34-47

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

考虑用户意愿的电动汽车集群可调度容量评估方法
A dispatch capacity assessment method for electric vehicle clusters considering user willingness

李振坤,胡焜,姚一聪
LI Zhenkun,HU Kun,YAO Yicong

摘要(Abstract):

针对EV(电动汽车)调度容量评估受用户参与意愿差异影响的问题,提出一种考虑用户意愿的EV集群可调度容量评估方法。首先,分析EV负荷数据概率密度函数间的联合熵,识别充电规律相似的日期,同时采用神经网络预测未来日EV的起始充电时刻及起始SOC(荷电状态)概率分布;然后,综合考虑电池健康状况、剩余SOC、预计的剩余停滞时长以及放电电价激励4个关键因素,构建EV用户主观参与调度意愿的模型,并运用模糊逻辑规则解析用户响应意愿;最后,在考虑用户出行需求和停滞时长约束的基础上,分析计算单体EV可调度容量,进而构建EV集群V2G(车网互动)可调度容量模型。算例分析结果表明,该方法能够精准预测EV的充电需求,有效量化用户响应意愿,实现对EV集群可调度容量的准确评估。
To address how variable user participation willingness affects electric vehicle(EV) dispatchable capacity assessment, this paper proposes a novel assessment method incorporating user willingness. First, joint entropy of probability density functions of EV load data is analyzed to identify dates with similar charging patterns, while a neural network predicts the probability distributions of initial charging times and initial state of charge(SOC) for future days. Second, a user participation willingness model is constructed by integrating four key factors—battery health status, remaining SOC, expected idle duration, and discharge electricity price incentives—using fuzzy logic rules to quantify response willingness. Finally, individual EV dispatch capacity is calculated subject to travel demand and idle duration constraints, followed by the development of an aggregate vehicle-to-grid(V2G) dispatchable capacity model for EV clusters. Case studies demonstrate that the proposed method accurately predicts EV charging demand, effectively quantifies user response willingness, and enables precise assessment of EV cluster dispatch capacity.

关键词(KeyWords): 多层感知器神经网络预测;模糊逻辑规则;车网互动;响应容量
multilayer perceptron neural network prediction;fuzzy logic rules;V2G;response capacity

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(52177098);; 上海市科技计划项目(21010501200)

作者(Author): 李振坤,胡焜,姚一聪
LI Zhenkun,HU Kun,YAO Yicong

DOI: 10.19585/j.zjdl.202601004

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享