燃气轮机叶片前缘冷却特性研究Research on the Cooling Characteristics of Gas Turbine Blade Leading Edge
郑添,王在华,应光耀,毛志伟
ZHENG Tian,WANG Zaihua,YING Guangyao,MAO Zhiwei
摘要(Abstract):
为了研究气膜冷却不同孔型对燃气轮机叶片冷却效率的影响,采用Fluent数值仿真软件,选用Realizable k-ε双方程湍流模型,对圆孔、交叉孔气膜冷却进行数值模拟。同时研究不同马赫数吹风比下圆孔、交叉孔冷却系数,换热系数,温度和冷却效率云图等。计算结果表明,同一孔型下叶片前缘冷却效率和换热系数较高,叶片中缘、尾缘相对较小。在同一吹风比下,不同孔型在叶片上冷却效率、换热系数的变化趋势一致,但是交叉孔的冷却效率和对流换热系数比圆孔高。
To investigate the impact of different hole shapes on cooling efficiency of gas turbine blade, Fluent numerical simulation software is employed and Realizable k-ε 2-equation turbulence model is selected for numerical simulation on round-hole and cross-hole film cooling. Meanwhile, round-hole and cross-hole cooling coefficients, heat transfer coefficients, as well as temperature and cooling efficiency cloud pictures under blowing ratios with different Mach numbers, are studied. The calculation result shows that the cooling efficiency and heat transfer coefficient at blade leading edge are high while those at the middle and end edge are low under the same hole shape; under the same blowing ratio, the variation trends of the cooling efficiency and heat transfer coefficient are the same under different hole shapes, but the cooling efficiency and convective heat transfer coefficient of cross-hole are higher than those of the round hole.
关键词(KeyWords):
燃气轮机;冷却;吹风比;孔型;数值模拟
gas turbine;cooling;blowing ratio;hole shape;numerical simulation
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS16002B)
作者(Author):
郑添,王在华,应光耀,毛志伟
ZHENG Tian,WANG Zaihua,YING Guangyao,MAO Zhiwei
DOI: 10.19585/j.zjdl.201910015
参考文献(References):
- [1]林宇震,燃烧室多斜孔壁气膜冷却研究[D].北京:北京航空航天大学,1997.
- [2]KUO-SAN H,CHRISTOPHER U.Conjugate heat transfer analysis for gas turbine cooled blade[C]//Proceeding of ASME Turbo Expo 2014,2014.
- [3]AMY M,KAREN A T,BRENT A C.Conjugate heat trans fer measuremengs and predictions of a blade endwall with a thermal barrier coating[C]//Journal of Turbomachinery,2014.
- [4]成锋娜,常海萍,张镜洋.突肩叶尖开槽对叶尖间隙流动和冷却特性的影响[J].推进技术,2018,39(1):125-133.
- [5]白江涛,朱惠人,张宗卫,等.流量比对气膜冷却叶片表面换热系数的影响[J].西安交通大学学报,2011,45(7):95-99.
- [6]孙兆文,朱惠人,周雷声,等.涡轮叶片表面全气膜冷却传热实验研究[J].汽轮机技术,2008,50(2):109-112.
- [7]李少华,张玲,朱励,等.涡轮叶片前缘冷却的流线分析[J].中国电机工程学报,2010,30(14):96-101.
- [8]唐学智,李录平,黄章俊.孔间距对燃气轮机动叶气膜冷却效果的影响[J].动力工程学报,2018,38(2):105-113.
- [9]李录平,唐学智,张浩.燃气轮机旋转状态下的动叶气膜冷却效果数值模拟研究[J].中国电力,2018,51(12):7-13.
- [10]张扬,张振,袁新.压力面气膜冷却射流端壁效应研究[J].工程热物理学报,2018,40(3):497-503.
- [11]曾军.气冷涡轮叶栅实验及数值模拟研究[D].南京:南京航空航天大学,2007.
- [12]李广超,朱惠人,廖乃冰,等.带单排气膜孔的叶片前缘气膜冷却换热实验[J].推进技术,2008,29(3):290-294.
- [13]朱惠人,向安定,许都纯,等.涡轮叶片表面气膜冷却效率的实验研究[J].推进技术,2003,24(6):528-531.
- [14]张宗卫,朱惠人,刘聪,等.全气膜冷却叶片表面换热系数和冷却效率研究[J].西安交通大学学报,2012,46(7):103-107.
- [15]李宝宽,张文博,王喜春.燃气轮机火焰筒肋化壁面逆流气膜冷却的数值模拟[J].东北大学学报(自然科学版),2018,39(10):37-42.
- [16]程会川,吴宏,李育隆.旋转状态下抑涡孔气膜冷却性能的实验研究[J].推进技术,2018,39(1):134-141.