海上风电功率预测研究综述A review of offshore wind power forecasting studies
司雅昕,刘训强,苏向敬,田书欣
SI Yaxin,LIU Xunqiang,SU Xiangjing,TIAN Shuxin
摘要(Abstract):
提高海上风电功率预测精度是提升海上风电并网安全性与稳定性最有效的手段之一。为此,对海上风电功率预测研究进行了综述。首先,结合近年来海上风电功率预测的相关研究,从海上风电数据预处理技术、海上风电功率预测模型和大规模海上风电场集群预测三个方面开展综述调研。接着,进一步分析了当前海上风电功率预测面临的挑战。最后,结合新兴技术探讨了海上风电功率预测的潜在研究方向。研究成果可为供海上风电场的运维及其并网后的系统调度提供参考。
Improving the accuracy of offshore wind power forecasting is one of the most effective means to enhance the security and stability of offshore wind power integration. To this end, this paper proposes a review of offshore wind power forecasting studies. First, based on recent studies in offshore wind power forecasting, the review investigates three key aspects, such as data preprocessing techniques for offshore wind power, offshore wind power forecasting models, and forecasting for large-scale offshore wind farm clusters. Subsequently, the challenges currently faced in offshore wind power forecasting are analyzed. Finally, potential future research directions are explored by incorporating emerging technologies. The findings of this study can serve as a reference for the operation and maintenance of offshore wind farms as well as system dispatch after grid integration.
关键词(KeyWords):
海上风电;功率预测;数值天气预报;概率预测;集群预测
offshore wind power;power forecasting;numerical weather forecasting;probabilistic forecasting;clustered forecasting
基金项目(Foundation): 国家自然科学基金(52007112)
作者(Author):
司雅昕,刘训强,苏向敬,田书欣
SI Yaxin,LIU Xunqiang,SU Xiangjing,TIAN Shuxin
DOI: 10.19585/j.zjdl.202511006
参考文献(References):
- [1] COSTOYA X,DECASTRO M,CARVALHO D,et al.Climate change impacts on the future offshore wind energy resource in China[J]. Renewable Energy,2021,175:731-747.
- [2]徐乾耀,康重庆,张宁,等.海上风电出力特性及其消纳问题探讨[J].电力系统自动化,2011,35(22):54-59.XU Qianyao,KANG Chongqing,ZHANG Ning,et al.A discussion on offshore wind power output characteristics and its accommodation[J].Automation of Electric Power Systems,2011,35(22):54-59.
- [3] S?RENSEN P,CUTULULIS N A,VIGUERASRODRíGUEZ A,et al. Modelling of power fluctuations from large offshore wind farms[J].Wind Energy,2008,11(1):29-43.
- [4] ZHENG X P,QI X X,LIU H D,et al.Deep neural network for short-term offshore wind power forecasting[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans(OTO).May 28-31,2018,Kobe,Japan:IEEE,2018:1-5.
- [5] NESHAT M,NEZHAD M M,ABBASNEJAD E,et al.A deep learning-based evolutionary model for short-term wind speed forecasting:a case study of the Lillgrund offshore wind farm[J].Energy Conversion and Management,2021,236:114002.
- [6]迟永宁,梁伟,张占奎,等.大规模海上风电输电与并网关键技术研究综述[J].中国电机工程学报,2016,36(14):3758-3771.CHI Yongning,LIANG Wei,ZHANG Zhankui,et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J].Proceedings of the CSEE,2016,36(14):3758-3771.
- [7]符杨,郑紫宸,时帅,等.考虑气象相似性与数值天气预报修正的海上风功率预测[J].电网技术,2019,43(4):1253-1260.FU Yang,ZHENG Zichen,SHI Shuai,et al. Offshore wind power forecasting considering meteorological similarity and NWP correction[J]. Power System Technology,2019,43(4):1253-1260.
- [8] LIN Z,LIU X L,COLLU M. Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks[J].International Journal of Electrical Power&Energy Systems,2020,118:105835.
- [9] MORSHEDIZADEH M, KORDESTANI M,CARRIVEAU R,et al. Application of imputation techniques and Adaptive Neuro-Fuzzy Inference System to predict wind turbine power production[J].Energy,2017,138:394-404.
- [10] LIU T H,WEI H K,ZHANG K J.Wind power prediction with missing data using Gaussian process regression and multiple imputation[J]. Applied Soft Computing,2018,71:905-916.
- [11] LIU X,ZHENG Z,ZHANG Z J,et al.A statistical learning framework for the intelligent imputation of offshore wind farm missing SCADA data[J]. 8th Renewable Power Generation Conference(RPG 2019),2019:1-4.
- [12] LI T,TANG J C,JIANG F,et al. Fill missing data for wind farms using long short-term memory based recurrent neural network[C]//2019 IEEE 3rd International Electrical and Energy Conference(CIEEC). September 7-9,2019,Beijing,China:IEEE,2019:705-709.
- [13] QU F M,LIU J H,MA Y J,et al.A novel wind turbine data imputation method with multiple optimizations based on GANs[J].Mechanical Systems and Signal Processing,2020,139:106610.
- [14] SUN C,CHEN Y Y,CHENG C.Imputation of missing data from offshore wind farms using spatio-temporal correlation and feature correlation[J]. Energy,2021,229:120777.
- [15] WANG Z J,ZHANG J,ZHANG Y,et al. Short-term wind speed forecasting based on information of neighboring wind farms[J].IEEE Access,2020,8:16760-16770.
- [16] LIU H,TIAN H Q,PAN D F,et al.Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks[J].Applied Energy,2013,107:191-208.
- [17] TASCIKARAOGLU A,UZUNOGLU M. A review of combined approaches for prediction of short-term wind speed and power[J]. Renewable and Sustainable Energy Reviews,2014,34:243-254.
- [18] WANG H Z,LI G Q,WANG G B,et al.Deep learning based ensemble approach for probabilistic wind power forecasting[J].Applied Energy,2017,188:56-70.
- [19] DU P,WANG J Z,YANG W D,et al. A novel hybrid model for short-term wind power forecasting[J].Applied Soft Computing,2019,80:93-106.
- [20] KIPLANGAT D C,ASOKAN K,KUMAR K S. Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition[J].Renewable Energy,2016,93:38-44.
- [21] WEI W,WU G L,YANG M H,et al.Short-term forecasting for wind speed based on wavelet decomposition and LMBP neural network[C]//2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies(DRPT). July 6-9,2011,Weihai,China:IEEE,2011:1126-1131.
- [22] LIU Y,ZENG D L,LIU J Z,et al.Short-term wind speed forecast based on wavelet packet transform and LS-SVM[C]//2012 24th Chinese Control and Decision Conference(CCDC).May 23-25,2012,Taiyuan,China:IEEE,2012:2811-2814.
- [23] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
- [24] WU Z H,HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.
- [25] SUN S Z,FU J Q,ZHU F.A short term wind speed forecasting method using signal decomposition and extreme learning machine[M]//Advanced Computational Methods in Energy,Power,Electric Vehicles,and Their Integration. Singapore:Springer Singapore,2017:22-31.
- [26] LI H,LIU T,WU X,et al.An optimized VMD method and its applications in bearing fault diagnosis[J].Measurement,2020,166:108185.
- [27]官元红,周广庆,陆维松,等.资料同化方法的理论发展及应用综述[J].气象与减灾研究,2007,30(4):1-8.GUAN Yuanhong,ZHOU Guangqing,LU Weisong,et al.Theory development and application of data assimilation methods[J]. Meteorology and Disaster Reduction Research,2007,30(4):1-8.
- [28]孙荣富,张涛,和青,等.风电功率预测关键技术及应用综述[J].高电压技术,2021,47(4):1129-1143.SUN Rongfu,ZHANG Tao,HE Qing,et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering,2021,47(4):1129-1143.
- [29] ARAKAWA A,JUNG J H,WU C M.Toward unification of the multiscale modeling of the atmosphere[J]. Atmospheric Chemistry&Physics,2011,11(8):3731-3742.
- [30]马雷鸣,鲍旭炜.数值天气预报模式物理过程参数化方案的研究进展[J].地球科学进展,2017,32(7):679-687.MA Leiming,BAO Xuwei.Research progress on physical parameterization schemes in numerical weather prediction models[J]. Advances in Earth Science,2017,32(7):679-687.
- [31]吴新荣,王喜冬,李威,等.海洋数据同化与数据融合技术应用综述[J].海洋技术学报,2015,34(3):97-103.WU Xinrong,WANG Xidong,LI Wei,et al. Review of the application of ocean data assimilation and data fusion techniques[J].Journal of Ocean Technology,2015,34(3):97-103.
- [32] ZEN S,HART E,MEDINA-LOPEZ E.The use of satellite products to assess spatial uncertainty and reduce lifetime costs of offshore wind farms[J].Cleaner Environmental Systems,2021,2:100008.
- [33] ZHAO J,GUO Z H,SU Z Y,et al.An improved multistep forecasting model based on WRF ensembles and creative fuzzy systems for wind speed[J]. Applied Energy,2016,162:808-826.
- [34] HOOLOHAN V,TOMLIN A S,COCKERILL T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data[J]. Renewable Energy,2018,126:1043-1054.
- [35] PEARRE N S,SWAN L G.Statistical approach for improved wind speed forecasting for wind power production[J]. Sustainable Energy Technologies and Assessments,2018,27:180-191.
- [36] ZJAVKA L.Wind speed forecast correction models using polynomial neural networks[J].Renewable Energy,2015,83:998-1006.
- [37] BUHAN S,?ZKAZAN?Y,?AD1RC1 I. Wind pattern recognition and reference wind mast data correlations with NWP for improved wind-electric power forecasts[J].IEEE Transactions on Industrial Informatics,2016,12(3):991-1004.
- [38] SKAMAROCK W C,KLEMP J B,DUDHIA J,et al.A description of the advanced research WRF model version 4[J].National Center for Atmospheric Research,2019,145(145):550.
- [39]何嘉桦.海上风电场超短期/短期功率预测融合模型验证与分析[D].杭州:浙江大学,2023.HE Jiahua. Verification and analysis of ultra-short-term/short-term power prediction fusion model for offshore wind farms[M].Hangzhou:Zhejiang University,2023.
- [40]王勃,冯双磊,刘晓琳,等.计及转折性天气过程识别与检验的短期风电功率预测[J].南方电网技术,2023,17(12):52-62.WANG Bo,FENG Shuanglei,LIU Xiaolin,et al. Shortterm wind power prediction considering identification and testing of transitional weather processes[J]. Southern Power System Technology,2023,17(12):52-62.
- [41] QUALLEN S,XING T.CFD simulation of a floating offshore wind turbine system using a variable-speed generator-torque controller[J].Renewable Energy,2016,97:230-242.
- [42]吴春雷.基于中尺度数值气象模式的风电场参数化建模方法研究[D].杭州:浙江大学,2023.WU Chunlei. Research on wind farm parameterization based on mesoscale numerical weather model[D].Hangzhou:Zhejiang University,2023.
- [43] ZHANG Y,WANG J X,WANG X F.Review on probabilistic forecasting of wind power generation[J].Renewable and Sustainable Energy Reviews,2014,32:255-270.
- [44] MORGAN E C,LACKNER M,VOGEL R M,et al.Probability distributions for offshore wind speeds[J].Energy Conversion and Management,2011,52(1):15-26.
- [45] SOUKISSIAN T.Use of multi-parameter distributions for offshore wind speed modeling:The Johnson SB distribution[J].Applied Energy,2013,111:982-1000.
- [46] YAN J,LIU Y Q,HAN S,et al.Reviews on uncertainty analysis of wind power forecasting[J].Renewable and Sustainable Energy Reviews,2015,52:1322-1330.
- [47] WAN C,LIN J,WANG J H,et al.Direct quantile regression for nonparametric probabilistic forecasting of wind power generation[J]. IEEE Transactions on Power Systems,2017,32(4):2767-2778.
- [48] HU J M,TANG J W,LIN Y Y. A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization[J].Renewable Energy,2020,149:141-164.
- [49] WANG J,BOTTERUD A,BESSA R,et al.Wind power forecasting uncertainty and unit commitment[J]. Applied Energy,2011,88(11):4014-4023.
- [50] YUAN R,WANG B,MAO Z X,et al. Multi-objective wind power scenario forecasting based on PG-GAN[J].Energy,2021,226:120379.
- [51] TANG C H,WANG Y S,XU J,et al.Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations[J]. Applied Energy,2018,221:348-357.
- [52] SUN M C,FENG C,ZHANG J.Conditional aggregated probabilistic wind power forecasting based on spatiotemporal correlation[J]. Applied Energy,2019,256:113842.
- [53]汪敏,荣腾飞,李茜,等.基于可学习小波自注意力模型的海上风电功率超短期预测[J].高电压技术,2025,51(3):1422-1433.WANG Min,RONG Tengfei,LI Qian,et al.Ultra-short term prediction of offshore wind power based on learnable wavelet self-attention model[J]. High Voltage Engineering,2025,51(3):1422-1433.
- [54]朱海龙.海上风电功率预测及其储能容量优化研究[M].南昌:南昌大学,2021.ZHU Hailong.Research on offshore wind power prediction and energy storage capacity optimization[M].Nanchang:Nanchang University,2021.
- [55] LIU J G,WANG J B,YU L,et al.Short-term prediction of offshore wind power based on CNN and LSTM[J].Journal of Physics:Conference Series,2024,2896(1):012048.
- [56] HEINERMANN J,KRAMER O. Machine learning ensembles for wind power prediction[J].Renewable Energy,2016,89:671-679.
- [57] ZHANG Y,WANG P,NI T,et al.Wind power prediction based on LS-SVM model with error correction[J]. Advances in Electrical and Computer Engineering,2017,17(1):3-8.
- [58]秦力,张安安,余佳鑫,等.一种全新频域约束下的海上风电超短期功率深度预测模型[J/OL].计算机工程,2024:1-14.[2024-09-10].https://link.cnki.net/doi/10.19678/j.issn.1000-3428.0069969.QIN Li,ZHANG An’an,YU Jiaxin,et al.A new ultrashort-term power depth prediction model for offshore wind power under frequency domain constraints[J/OL]. Computer Engineering,2024:1-14.[2024-09-10].https://link.cnki.net/doi/10.19678/j.issn.1000-3428.0069969.
- [59] SUN Y,ZHOU Q B,SUN L,et al.CNN-LSTM-AM:a power prediction model for offshore wind turbines[J].Ocean Engineering,2024,301:117598.
- [60]苏向敬,程子凡,聂良钊,等.基于AGCN-LSTM模型的海上风电场功率概率预测[J].电力系统自动化,2024,48(22):140-149.SU Xiangjing,CHENG Zifan,NIE Liangzhao,et al.Power probability prediction for offshore wind farm based on AGCN-LSTM model[J]. Automation of Electric Power Systems,2024,48(22):140-149.
- [61]时帅,张皓,黄冬梅,等.考虑爬坡特征量的海上风电短期分区功率预测[J].太阳能学报,2024,45(12):258-268.SHI Shuai,ZHANG Hao,HUANG Dongmei,et al.Shortterm zoning power prediction of offshore wind power considering climbing feature quantities[J].Acta Energiae Solaris Sinica,2024,45(12):258-268.
- [62] LIU X L,LIN Z,FENG Z M.Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM[J].Energy,2021,227:120492.
- [63]葛晓琳,严鑫,符杨,等.基于降尺度台风模拟的海上风电有序避险时空优化调度策略[J/OL].中国电机工程学报,2025:1-14.[2025-03-26]. https://kns. cnki. net/KCMS/detail/detail. aspx? filename=ZGDC20250303003&dbname=CJFD&dbcode=CJFQ.GE Xiaolin,YAN Xin,FU Yang,et al.Space time optimization scheduling strategy for orderly avoidance of offshore wind power based on downscaled typhoon simulation[J/OL].Proceedings of the CSEE,2025:1-14.[2025-03-26].https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGDC20250303003&dbname=CJFD&dbcode=CJFQ.
- [64]余光正,陆柳,汤波,等.考虑转折性天气的海上风电功率超短期分段预测方法研究[J].中国电机工程学报,2022,42(13):4859-4871.YU Guangzheng,LU Liu,TANG Bo,et al.Research on ultra-short-term subsection forecasting method of offshore wind power considering transitional weather[J].Proceedings of the CSEE,2022,42(13):4859-4871.
- [65]钟宏宇,王超,张旭光,等.组合预测技术在风电中的研究分析[J].电器与能效管理技术,2018(16):60-66.ZHONG Hongyu,WANG Chao,ZHANG Xuguang,et al.Overview of research on power forecasting combined technology in wind power[J]. Electrical&Energy Management Technology,2018(16):60-66.
- [66]张璐.基于GA-LSSVM与ARIMA组合的短期风功率预测[D].包头:内蒙古科技大学,2022.ZHANG Lu. Short-term wind power prediction based on the combination of GA-LSSVM and ARIMA[D].Baotou:Inner Mongolia University of Science and Technology,2022.
- [67]王凯.风电场短期风速及风功率预测研究[D].昆明:昆明理工大学,2021.WANG Kai.Research on short-term wind speed and wind power prediction in wind farms[D]. Kunming:Kunming University of Science and Technology,2021.
- [68]安佰慧,袁博文,赵胜利,等.海上风功率预测精度的影响因素及提升方法研究[J].水电与新能源,2024,38(7):21-26.AN Baihui,YUAN Bowen,ZHAO Shengli,et al.Influencing factors and accuracy improvement methods for the wind power prediction of offshore wind farms[J].Hydropower and New Energy,2024,38(7):21-26.
- [69]傅质馨,王宝池,刘皓明,等.基于风速-功率组合分解重构的海上风电功率预测[J].太阳能学报,2024,45(11):418-426.FU Zhixin,WANG Baochi,LIU Haoming,et al.Offshore wind power forecasting based on wind speed-power combination decompositon[J]. Acta Energiae Solaris Sinica,2024,45(11):418-426.
- [70] WU Q Y,GUAN F,LV C,et al.Ultra-short-term multistep wind power forecasting based on CNN-LSTM[J].IET Renewable Power Generation,2021,15(5):1019-1029.
- [71]王亮,刘亚南,柳强,等.基于自启动系统的海上风电并网技术[J].电力电容器与无功补偿,2024,45(2):134-140.WANG Liang,LIU Yanan,LIU Qiang,et al. Gridconnected technology of offshore wind power based on self-starting system[J]. Power Capacitor&Reactive Power Compensation,2024(2):134-140.
- [72]彭发喜,陈建福,袁智勇,等.海上风电柔性低频输电动模平台设计[J].电力电容器与无功补偿,2024,45(5):108-116.PENG Faxi,CHEN Jianfu,YUAN Zhiyong,et al.Design of dynamic model platform for offshore wind farm interconnection via flexible lowfrequency AC transmission system[J]. Power Capacitor&Reactive Power Compensation,2024(5):108-116.
- [73]刘燕华,刘冲,李伟花,等.基于出力模式匹配的风电集群点多时间尺度功率预测[J].中国电机工程学报,2014,34(25):4350-4358.LIU Yanhua,LIU Chong,LI Weihua,et al. Multi-time scale power prediction of wind farm cluster based on profile pattern matching[J].Proceedings of the CSEE,2014,34(25):4350-4358.
- [74] YAN J,ZHANG H,LIU Y Q,et al.Forecasting the high penetration of wind power on multiple scales using multito-multi mapping[J]. IEEE Transactions on Power Systems,2018,33(3):3276-3284.
- [75]彭小圣,熊磊,文劲宇,等.风电集群短期及超短期功率预测精度改进方法综述[J].中国电机工程学报,2016,36(23):6315-6326.PENG Xiaosheng,XIONG Lei,WEN Jinyu,et al.A summary of the state of the art for short-term and ultra-shortterm wind power prediction of regions[J].Proceedings of the CSEE,2016,36(23):6315-6326.
- [76] OZKAN M B,KARAGOZ P.Data mining-based upscaling approach for regional wind power forecasting:regional statistical hybrid wind power forecast technique(RegionalSHWIP)[J].IEEE Access,2019,7:171790-171800.
- [77] PETTAS V,KRETSCHMER M,CLIFTON A,et al.On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus[J].Wind Energy Science,2021,6(6):1455-1472.
- [78] CA?ADILLAS B,FOREMAN R,BARTH V,et al.Offshore wind farm wake recovery:Airborne measurements and its representation in engineering models[J].Wind Energy,2020,23(5):1249-1265.
- [79] ZHANG H,LIU Y Q,YAN J,et al.Improved deep mixture density network for regional wind power probabilistic forecasting[J]. IEEE Transactions on Power Systems,2020,35(4):2549-2560.
- [80]蒋帅,李德志,廖霈之,等.配电网精细化拓扑运行状态DCNN在线辨识方法[J].电力需求侧管理,2024,26(5):36-42.JIANG Shuai,LI Dezhi,LIAO Peizhi,et al.Deep convolutional neural network online identification method for detailed topological operating states of distribution network[J].Power Demand Side Management,2024(5):36-42.
- [81]翟晶晶,乔阳,郝思鹏.基于深度学习的新能源场站不良数据辨识与修正方法[J].电力需求侧管理,2024,26(5):28-35.ZHAI Jingjing,QIAO Yang,HAO Sipeng. Identification and correction method of bad data of new energy plants based on deep learning[J].Power Demand Side Management,2024(5):28-35.
- [82] YU M,ZHANG Z,LI X W,et al. Superposition Graph Neural Network for offshore wind power prediction[J].Future Generation Computer Systems,2020,113:145-157.
- [83] PARK J,PARK J.Physics-induced graph neural network:an application to wind-farm power estimation[J].Energy,2019,187:115883.
- [84] KHODAYAR M,WANG J H. Spatio-temporal graph deep neural network for short-term wind speed forecasting[J]. IEEE Transactions on Sustainable Energy,2019,10(2):670-681.
- [85] XU M X,DAI W R,LIU C M,et al. Spatial-temporal transformer networks for traffic flow forecasting[EB/OL]. 2020:2001.02908. https://arxiv. org/abs/2001.02908v2.
- [86]纪守领,李进锋,杜天宇,等.机器学习模型可解释性方法、应用与安全研究综述[J].计算机研究与发展,2019,56(10):2071-2096.JI Shouling,LI Jinfeng,DU Tianyu,et al.Survey on techniques,applications and security of machine learning interpretability[J].Journal of Computer Research and Development,2019,56(10):2071-2096.
- 海上风电
- 功率预测
- 数值天气预报
- 概率预测
- 集群预测
offshore wind power - power forecasting
- numerical weather forecasting
- probabilistic forecasting
- clustered forecasting