浙江电力

2022, v.41;No.313(05) 82-88

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于自动机器学习的电网客户语音情感分类方法
Classification Research on Emotion in Speech of Grid Customers Based on AutoML

沈然,王庆娟,金良峰,丁麒
SHEN Ran,WANG Qingjuan,JIN Liangfeng,DING Qi

摘要(Abstract):

自动识别电网客户语音中的情感对电网运营具有重要的意义,语音情感分类模型往往需要专家根据经验设计,这限制了人工智能算法在这一模型上的应用。提出了一种基于自动机器学习的电网客户语音情感分类算法。首先设计了神经网络搜索空间构建方法,构建了基础的神经网络基本组成单元,并搭建了对应的元架构空间。然后,为了提高情感分类模型的准确率,利用强化学习进行神经网络模型和超参数的求解。实验结果表明,该算法可以有效完成电网客户情感分类任务,情感分类准确率达到90.93%,而且整个过程不依赖于人工设计,具有较高的效率和准确率。
The recognition of emotion in speech of customers is of great significance to grid operation. However,the recognition model of emotion in speech is designed by experts,which imposes restrictions on the application of artificial intelligence. This paper proposes a classification algorithm of emotion in speech for power grid customers. The algorithm designs a neural network search space construction method,and constructs the basic components of the neural network and the corresponding meta-architecture space. Then,in order to improve the performance of the final emotion recognition model,reinforcement learning is used to solve the neural network model and hyperparameters. Experimental results show that the algorithm can effectively complete the recognition of emotion in speech,and the accuracy of classification accuracy is up to 90.93%;moreover,the whole process does not rely on manual design,and has high efficiency and accuracy.

关键词(KeyWords): 自动机器学习;情感识别;搜索空间构建;强化学习
AutoML;emotion classification;search space construction;reinforcement learning

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211YF200052)

作者(Author): 沈然,王庆娟,金良峰,丁麒
SHEN Ran,WANG Qingjuan,JIN Liangfeng,DING Qi

DOI: 10.19585/j.zjdl.202205012

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享