基于WOA-SVM的智能变电站二次系统故障参数映射模型A WOA-based fault parameter mapping model for the secondary systems of intelligent substations
郑翔,杜奇伟,阮黎翔,王海园,周坤,王义波
ZHENG Xiang,DU Qiwei,RUAN Lixiang,WANG Haiyuan,ZHOU Kun,WANG Yibo
摘要(Abstract):
目前通过人工分析大量运行信息难以快速精确定位智能变电站二次系统故障,无法适应智能电网高可靠性运行要求。为此,提出一种智能变电站二次系统故障参数映射模型。首先根据特征信息建立故障定位推理知识库,对故障类型进行编码。然后基于智能变电站的历史运行数据构建模型训练集,引入多分类器对SVM(支持向量机)算法进行改进,用WOA(鲸鱼优化算法)优化其参数,以设备状态为输入,二次系统故障类型为输出,建立了智能变电站二次系统设备参数与运行状态之间的映射关系。最后以实际数据作为测试集对所提模型进行检验,证明了此故障参数映射模型的有效性。
Currently, it is challenging to rapidly and precisely locate faults in the secondary systems of intelligent substations through manual analysis of extensive operational data, making it inadequate for meeting the high reliability requirements of smart grids. To address this issue, a fault parameter mapping model for the secondary systems of intelligent substations is proposed. Firstly, a knowledge base for fault localization reasoning is established based on characteristic information to encode fault types. Subsequently, utilizing historical operational data from intelligent substations, a training set for the model is constructed. The support vector machine(SVM) is enhanced by introducing a multi-classifier approach, and its parameters are optimized using the whale optimization algorithm(WOA). By taking equipment status as input and secondary system fault types as output, a mapping relationship is established between the parameters of secondary system equipment of intelligent substations and the operational state. Finally, the proposed model is validated using actual data as a test set, demonstrating the effectiveness of the proposed model.
关键词(KeyWords):
智能变电站;二次系统;故障参数映射;鲸鱼优化算法;支持向量机
intelligent substation;secondary system;fault parameter mapping;WOA;SVM
基金项目(Foundation): 国网浙江省电力有限公司科技项目(B311QZ220001)
作者(Author):
郑翔,杜奇伟,阮黎翔,王海园,周坤,王义波
ZHENG Xiang,DU Qiwei,RUAN Lixiang,WANG Haiyuan,ZHOU Kun,WANG Yibo
DOI: 10.19585/j.zjdl.202401005
参考文献(References):
- [1]XU B A,YIN X,YIN X G,et al.Fault diagnosis of power systems based on temporal constrained fuzzy petri nets[J].IEEE Access,2019,7:101895-101904.
- [2]樊陈,倪益民,申洪,等.中欧智能变电站发展的对比分析[J].电力系统自动化,2015,39(16):1-7.FAN Chen,NI Yimin,SHEN Hong,et al.Comparative analysis on development of smart substations in China and Europe[J].Automation of Electric Power Systems,2015,39(16):1-7.
- [3]袁明哲,邹经鑫,汪艮,等.基于PSO-SVM的智能变电站二次系统故障诊断方法[J].电力工程技术,2020,39(6):172-176.YUAN Mingzhe,ZOU Jingxin,WANG Gen,et al.Fault diagnosis method for secondary system of smart substation based on PSO-SVM[J].Electric Power Engineering Technology,2020,39(6):172-176.
- [4]王同文,刘宏君,邵庆祝,等.智能变电站二次回路智能预警及故障诊断技术研究[J].电测与仪表,2020,57(8):59-63.WANG Tongwen,LIU Hongjun,SHAO Qingzhu,et al.Research on intelligent early warning and fault diagnosis technology for the secondary loop of smart substation[J].Electrical Measurement&Instrumentation,2020,57(8):59-63.
- [5]金逸,刘伟,査显光,等.智能变电站状态监测技术及应用[J].江苏电机工程,2012,31(2):12-15.JIN Yi,LIU Wei,ZHA Xianguang,et al.The technology of state monitoring system and its application in smart substation[J].Jiangsu Electrical Engineering,2012,31(2):12-15.
- [6]YOO H,SHON T.Novel approach for detecting network anomalies for substation automation based on IEC 61850[J].Multimedia Tools and Applications,2015,74(1):303-318.
- [7]朱小红,王利平,杨琪,等.基于Markov的智能变电站二次系统间隔层和过程层可靠性评估[J].电测与仪表,2019,56(8):73-80.ZHU Xiaohong,WANG Liping,YANG Qi,et al.The reliability evaluation of bay level and process level in smart substation secondary system based on Markov[J].Electrical Measurement&Instrumentation,2019,56(8):73-80.
- [8]李书山,刘宏君,吴忠福,等.智能变电站二次系统可靠性建模及分析[J].电测与仪表,2020,57(21):61-69.LI Shushan,LIU Hongjun,WU Zhongfu,et al.Reliability modeling and analysis of secondary system in smart substation[J].Electrical Measurement&Instrumentation,2020,57(21):61-69.
- [9]赵子涵,刘鑫,叶翔,等.智能变电站二次系统“一键式”安措自动生成方法研究[J].电测与仪表,2019,56(4):15-20.ZHAO Zihan,LIU Xin,YE Xiang,et al.Research on“oneclick”automatic generation method for maintenance safety measures of secondary device in smart substation[J].Electrical Measurement&Instrumentation,2019,56(4):15-20.
- [10]HUANG S J,LIU X Z.Application of artificial bee colonybased optimization for fault section estimation in power systems[J].International Journal of Electrical Power&Energy Systems,2013,44(1):210-218.
- [11]王家林,夏立,吴正国,等.采用遗传神经网络的电力系统暂态信号分析方法[J].高电压技术,2011,37(1):170-175.WANG Jialin,XIA Li,WU Zhengguo,et al.Analysis of power system transient signal using genetic algorithm and neural network[J].High Voltage Engineering,2011,37(1):170-175.
- [12]HONG Y Y,LIAN R C.Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using markov-based genetic algorithm[J].IEEE Transactions on Power Delivery,2012,27(2):640-647.
- [13]和定繁,蒋羽鹏,杨珊,等.云计算环境下基于C4.5决策树算法的智能变电站电力设备状态监测方法[J].电子设计工程,2021,29(8):135-139.HE Dingfan,JIANG Yupeng,YANG Shan,et al.Condition monitoring method of power equipment in intelligent substation based on C4.5 decision tree algorithm in cloud computing environment[J].Electronic Design Engineering,2021,29(8):135-139.
- [14]贾嵘,徐其惠,李辉,等.最小二乘支持向量机多分类法的变压器故障诊断[J].高电压技术,2007,33(6):110-113.JIA Rong,XU Qihui,LI Hui,et al.Fault diagnosis of transformer using multi-class least squares support vector machine[J].High Voltage Engineering,2007,33(6):110-113.
- [15]陈逸枞,张大海,李宇欣,等.基于DWT-MOSMA-SVM的多目标优化短期母线负荷预测[J].电力建设,2023,44(3):49-55.CHEN Yicong,ZHANG Dahai,LI Yuxin,et al.Multiobjective optimization based on DWT-MOSMA-SVM for short-term bus load forecasting[J].Electric Power Construction,2023,44(3):49-55.
- [16]张苏,郭裕钧,张血琴,等.基于SVM-RF的电力线路故障诊断研究[J].山东电力技术,2022,49(11):36-43.ZHANG Su,GUO Yujun,ZHANG Xueqin,et al.Research on fault diagnosis of transmission line based on SVM-RF method[J].Shandong Electric Power,2022,49(11):36-43.
- [17]CHEN W H.Decentralized fault diagnosis and its hardware implementation for distribution substations[J].IEEETransactions on Power Delivery,2012,27(2):902-909.
- [18]赵春华,胡恒星,陈保家,等.基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断[J].振动与冲击,2019,38(10):31-37.ZHAO Chunhua,HU Hengxing,CHEN Baojia,et al.Bearing fault diagnosis based on the deep learning feature extractionand WOA SVM state recognition[J].Journal of Vibration and Shock,2019,38(10):31-37.
- [19]安国庆,史哲文,马世峰,等.基于RF特征优选的WOA-SVM变压器故障诊断[J].高压电器,2022,58(2):171-178.AN Guoqing,SHI Zhewen,MA Shifeng,et al.Fault diagnosis of WOA-SVM transformer based on RF feature optimization[J].High Voltage Apparatus,2022,58(2):171-178.
- [20]XIA X,LIU X F,LOU J C.Smart substation network fault classification based on a hybrid optimization algorithm[J].International Journal of Electronics and Telecommunications,2019,65(4):657-663.