基于磁悬浮飞轮储能的脉冲功率电源系统设计Design of Pulsed Power Supply System Based on Magnetic Suspension Flywheel Energy Storage
江卫良,陈烨
JIANG Weiliang,CHEN Ye
摘要(Abstract):
设计构建了一套基于磁悬浮飞轮储能的脉冲功率电源系统,该系统主要包括储能部分、充电部分、放电部分及监控系统。储能部分采用磁悬浮飞轮储能装置,充电部分采用充电电源和充电机,放电部分采用逆变器和变压器,监控系统实现对整个系统的数据采集、存储、监视和控制。系统的运行状态包括静止状态、启动状态、充电状态、放电状态、待机状态和停机状态。通过监控系统对整个系统的运行状态进行协同控制,保持系统正常运行。搭建模拟测试系统进行了实验测试,结果表明,测试系统能够在3 ms内快速响应,输出秒级的脉冲平顶波。该系统采用模块化设计,容量配置灵活,响应速度快,使用寿命长,建设周期短,运维简单,可满足多种应用场景下的脉冲功率电源需求。
A pulsed power supply system based on magnetic suspension flywheel energy storage is designed,which comprises the energy storage part, charging unit, discharging unit and monitoring system. Magnetic suspension flywheel energy storage devices are used for energy storage unit, the charging power supply and chargers are used for the charging unit, the inverters and transformers are used for discharging unit, and the monitoring system realizes data acquisition, storage, monitoring and control of the whole system. The operation states of the system includes static state, startup state, charging state, discharging state, standby state and shutdown state. The operation states of the whole system is controlled cooperatively by the monitoring system to maintain normal operation of the system. The simulation test system is built for experiment, and the results show that the test system can respond quickly within 3 ms and output second-level pulse flat top wave.The system adopts modular design, which is characterized by flexible capacity configuration, responsiveness,long service life, short construction period, simple operation and maintenance, and can be used as pulsed power supply in various application scenarios.
关键词(KeyWords):
磁轴承;磁悬浮飞轮储能;脉冲功率电源;储能系统
magnetic bearing;magnetic suspension flywheel energy storage;pulsed power supply;energy storage system
基金项目(Foundation): 深圳市科技计划项目资金资助(重2019N027)
作者(Author):
江卫良,陈烨
JIANG Weiliang,CHEN Ye
DOI: 10.19585/j.zjdl.202005008
参考文献(References):
- [1]郑建毅,何闻.脉冲功率技术的研究现状和发展趋势综述[J].机电工程,2008,25(4):1-4.
- [2]李化,吕霏,林福昌,等.应用于脉冲功率系统的高储能密度电容器[J].强激光与粒子束,2012,24(3):554-558.
- [3]陈凯.飞轮脉冲电源充电控制策略的研究[D].南京:东南大学,2014.
- [4]李浩.飞轮脉冲电源放电控制策略的仿真研究[D].南京:东南大学,2014.
- [5]戴兴建,邓占峰,刘刚,等.大容量先进飞轮储能电源技术发展状况[J].电工技术学报,2011,26(7):133-140.
- [6]李树胜,付永领,刘平,等.磁悬浮飞轮储能UPS系统集成应用及充放电控制方法研究[J].中国电机工程学报,2017,37(S1):170-176.
- [7]王磊,杜晓强,宋永端.用于风电场的飞轮储能矩阵系统协调控制[J].电网技术,2013,37(12):3406-3412.
- [8]皮振宏,戴兴建,魏殿举,等.飞轮储能系统容量分析与设计[J].储能科学与技术,2019,8(4):778-783.
- [9]皮洪文.基于飞轮储能的重复平顶脉冲强磁场系统的研究[D].武汉:华中科技大学,2016.
- [10]孙杰.飞轮储能电源恒压放电控制方法的研究[D].天津:天津大学,2011.
- [11]戴兴建,姜新建,王秋楠,等.1 MW/60 MJ飞轮储能系统设计与实验研究[J].电工技术学报,2017,32(21):169-175.
- [12]沈阳微控新能源技术有限公司.微控VDC XXT系列产品用户手册[Z].2020.
- [13]周水杉,章莉.脉冲功率电容器的应用和发展[J].电子元件与材料,2016,35(11):98-102.
- [14]刘坤,马进,张东东,等.脉冲功率电源模块时序放电控制系统设计[J].强激光与粒子束,2018,30(3):98-104.
- [15]张亚舟,李贞晓,金涌,等.电磁发射用13 MJ脉冲功率电源系统研究[J].兵工学报,2016,37(5):778-784.
- [16]徐硕.一种飞轮储能系统用被动磁轴承组设计与分析[J].电网与清洁能源,2019,35(6):34-39.
- [17]文贤馗,张世海,邓彤天,等.大容量电力储能调峰调频性能综述[J].发电技术,2018,39(6):487-492.
- 磁轴承
- 磁悬浮飞轮储能
- 脉冲功率电源
- 储能系统
magnetic bearing - magnetic suspension flywheel energy storage
- pulsed power supply
- energy storage system