浙江电力

2019, v.38;No.276(04) 61-68

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于卷积神经网络的主变压器外观缺陷检测方法
An Exterior Defects Detecting Method of Main Transformer Based on Convolutional Neural Networks

位一鸣,童力,罗麟,杨珊
WEI Yiming,TONG Li,LUO Ling,YANG Shan

摘要(Abstract):

主变压器是变电站中最重要的电气设备之一,其运行状况直接影响所连区域电网的安全可靠运行。为全面提升主变压器外观缺陷检出效率,提出了一种基于CNN(卷积神经网络)算法的主变压器外观缺陷机器视觉识别检测方法。针对海量设备图像,该方法中的SSD算法模块能够准确提取目标设备(主变压器), CNN算法模块可对图像中所含缺陷信息进行解析。为了提升检测方法的准确性,针对检测算法负样本不足的问题,利用VGG-Net的图像迁移算法对主变压器缺陷样本进行扩充,以提升整个算法模型的泛化能力。最后,利用实际运维检修工作中采集整理的主变压器图像样本集进行算法验证,结果表明该方法能较准确地识别出变压器外观缺陷,具有较高的有效性和可行性。
Main transformer is one of the most important equipment in substation, and its operation condition is concerned with operation safety and reliability of the power grid. In order to improve the efficiency of exterior defect detection of the main transformer, the paper proposes computer vision technology for exterior defect detection based on CNN(convolutional neural networks). The SSD algorithm module can accurately extract object equipment(main transformer), and the CNN algorithm module can process defect information in the massive images. For accuracy improvement of the detection method, the image immigrating algorithm of VGG-Net is used to expand image defect samples to improve the generalization of the whole algorithm model.Finally, the main transformer image sample sets collected from operation and maintenance are used to verify the algorithm, and the result shows that the method can accurately detect exterior defects of transformer with its effectiveness and feasibility.

关键词(KeyWords): 主变压器;外观缺陷;机器视觉;目标检测;风格迁移
main transformer;exterior defect;computer vision;object detection;style transformation

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司群创项目(5211ZS180010)

作者(Author): 位一鸣,童力,罗麟,杨珊
WEI Yiming,TONG Li,LUO Ling,YANG Shan

DOI: 10.19585/j.zjdl.201904011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享