浙江电力

2025, v.44;No.356(12) 125-136

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于深度森林和SMOTE算法的输电线路故障识别方法
A transmission line fault identification method based on Deep Forest and SMOTE

姜凯华,张永,谢迎谱,李特,王少华,雷梦飞,王博闻
JIANG Kaihua,ZHANG Yong,XIE Yingpu,LI Te,WANG Shaohua,LEI Mengfei,WANG Bowen

摘要(Abstract):

输电线路故障原因复杂多样,且各类故障的发生频率存在显著差异,导致故障暂态波形数据在类别上存在明显不平衡性。为提高故障识别的准确性并增强模型的泛化能力,提出一种结合深度森林与SMOTE(合成少数过采样技术)算法的输电线路故障识别方法。首先,提取故障暂态波形的时频域特征,并将其输入深度森林模型中以获取各类故障的预测概率;随后,针对输出的类别概率分布,采用SMOTE算法进行过采样,缓解少数类样本在预测阶段的判别偏差,从而提升整体识别精度。通过与多种传统机器学习算法的对比实验验证,所提方法在故障识别准确率和泛化性能方面均表现出更优性能。
Power transmission line faults exhibit multi-causal origins and imbalanced occurrence frequencies across fault types, resulting in significant class imbalance in transient waveform data. To improve fault identification accuracy and enhance model generalization capability, this paper proposes an integrated approach combining Deep Forest and synthetic minority oversampling technique(SMOTE). The method first extracts time-frequency domain features from fault transient waveforms and inputs them into the Deep Forest model to obtain prediction probabilities for each fault type. The SMOTE is then applied to the output probability distribution to perform oversampling, mitigating discrimination bias against minority-class samples during prediction and thereby improving overall identification accuracy. Comparative experiments with various traditional machine learning algorithms demonstrate that the proposed method achieves better performance in both fault identification accuracy and generalization capability.

关键词(KeyWords): 深度森林;过采样;故障识别;输电线路;机器学习
Deep Forest;oversampling;fault identification;transmission line;machine learning

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS23000M)

作者(Author): 姜凯华,张永,谢迎谱,李特,王少华,雷梦飞,王博闻
JIANG Kaihua,ZHANG Yong,XIE Yingpu,LI Te,WANG Shaohua,LEI Mengfei,WANG Bowen

DOI: 10.19585/j.zjdl.202512012

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享