基于灰狼优化算法的虚拟惯量分配方法A virtual inertia allocation method based on grey wolf optimization
南东亮,段玉,张路,毋根柱,朱子民
NAN Dongliang,DUAN Yu,ZHANG Lu,WU Genzhu,ZHU Zimin
摘要(Abstract):
针对电力系统中虚拟惯量替代转动惯量后的最优分配问题,提出一种基于灰狼优化算法的虚拟惯量分配方法。首先,确定高比例新能源电力系统对惯量的需求;其次,综合考虑频率稳定性以及虚拟惯量投资成本等因素,以临界惯量、频率变化率、最大频差作为约束条件,以频率安全指标最小化与投资成本最低为目标构建虚拟惯量优化分配模型,并采用灰狼优化算法求解;最后,以修改后的WSCC 9节点系统与IEEE 39节点系统为例进行仿真分析,结果验证了所提方法的有效性与普适性。
To address the optimal inertia allocation after replacing the moment of inertia with virtual inertia in power systems, a method for virtual inertia allocation based on grey wolf optimization(GWO) is proposed. Firstly, the demand for inertia in high-proportion renewable energy power systems is determined. Secondly, considerations include factors such as frequency stability and investment cost of virtual inertia. An optimal model for virtual inertia allocation is constructed with critical inertia, rate of change of frequency(RoCoF), and maximum frequency deviation as constraints, as well as with the objective of minimizing the frequency safety index and investment cost. The GWO is employed to solve the model. Finally, simulation analysis is conducted using the modified WSCC 9-bus system and IEEE 39-bus system as examples. The results validate the effectiveness and universality of the proposed method.
关键词(KeyWords):
虚拟惯量;临界惯量;频率稳定;投资成本;灰狼优化算法
virtual inertia;critical inertia;frequency stability;investment cost;GWO
基金项目(Foundation): 国家自然科学基金(52267009);; 国网新疆电力有限公司电力科学研究院科学技术项目(5230DK230001)
作者(Author):
南东亮,段玉,张路,毋根柱,朱子民
NAN Dongliang,DUAN Yu,ZHANG Lu,WU Genzhu,ZHU Zimin
DOI: 10.19585/j.zjdl.202408002
参考文献(References):
- [1]董炜,华文,王冠中,等.基于快速核学习的新能源高渗透电网频率风险评估[J].浙江电力,2022,41(4):1-6.DONG Wei,HUA Wen,WANG Guanzhong,et al.Frequency risk assessment for power grid with highpenetration renewable integration based on fast kernel learning[J].Zhejiang Electric Power,2022,41(4):1-6.
- [2]王淋,齐志男,雷为民,等.虚拟同步发电机对多机系统小干扰稳定性的影响研究[J].浙江电力,2019,38(9):86-94.WANG Lin,QI Zhinan,LEI Weimin,et al. Research on the effect of virtual synchronous generator on small disturbance stability of multi-machine power system[J]. Zhejiang Electric Power,2019,38(9):86-94.
- [3]林晓煌,文云峰,杨伟峰.惯量安全域:概念、特点及评估方法[J].中国电机工程学报,2021,41(9):3065-3079.LIN Xiaohuang,WEN Yunfeng,YANG Weifeng. Inertia security region:concept,characteristics,and assessment method[J].Proceedings of the CSEE,2021,41(9):3065-3079.
- [4]刘方蕾,胥国毅,刘家豪,等.考虑电网结构和参数的电力系统惯量分布特性[J].电力系统自动化,2021,45(23):60-67.LIU Fanglei,XU Guoyi,LIU Jiahao,et al.Inertia distribution characteristics of power system considering structure and parameters of power grid[J]. Automation of Electric Power Systems,2021,45(23):60-67.
- [5] POOLLA B K,BOLOGNANI S,D?RFLER F. Placing rotational inertia in power grids[C]//2016 American Control Conference(ACC),6-8 Jul. 2016,Boston,MA,USA.IEEE,2016:2314-2320.
- [6] POOLLA B K,BOLOGNANI S,D?RFLER F.Optimal placement of virtual inertia in power grids[J].IEEE Transactions on Automatic Control,2017,62(12):6209-6220.
- [7]刘昊邦,马辉,熊致知,等.基于改进烟花算法的虚拟惯量配置策略[J].科学技术与工程,2019,19(16):154-158.LIU Haobang,MA Hui,XIONG Zhizhi,et al.Virtual inertia configuration strategy based on improved fireworks algorithm[J].Science Technology and Engineering,2019,19(16):154-158.
- [8]黄俊凯,杨知方,刘珏麟,等.面向小干扰稳定提升的虚拟惯量优化分配模型与方法[J].中国电机工程学报,2020,40(3):713-723.HUANG Junkai,YANG Zhifang,LIU Juelin,et al.Optimal allocation of virtual inertia for improving small-signal stability[J].Proceedings of the CSEE,2020,40(3):713-723.
- [9]刘昊邦.基于多目标优化的虚拟惯量配置[D].宜昌:三峡大学,2020.LIU Haobang.Virtual inertia configuration based on multiobjective optimization[D]. Yichang:China Three Gorges University,2020.
- [10] HAN T,HILL D J.Dispatch of virtual inertia and damping:numerical method with SDP and ADMM[J].International Journal of Electrical Power&Energy Systems,2021,133:107259.
- [11] POOLLA B K,BOLOGNANI S,LI N,et al.A market mechanism for virtual inertia[J]. IEEE Transactions on Smart Grid,2020,11(4):3570-3579.
- [12]任凯奇,张东英,黄越辉,等.基于新能源出力比例的大规模系统惯量估计[J].电网技术,2022,46(4):1307-1315.REN Kaiqi,ZHANG Dongying,HUANG Yuehui,et al.Large-scale system inertia estimation based on new energy output ratio[J].Power System Technology,2022,46(4):1307-1315.
- [13] LIU M Y,CHEN J R,MILANO F.On-line inertia estimation for synchronous and non-synchronous devices[J].IEEE Transactions on Power Systems,2021,36(3):2693-2701.
- [14] DELKHOSH H,SEIFI H.Power system frequency security index considering all aspects of frequency profile[J].IEEE Transactions on Power Systems,2021,36(2):1656-1659.
- [15]谢宇峥.大范围频率偏移场景下电力系统频率稳定机理及协调控制[D].济南:山东大学,2021.XIE Yuzheng. Power system frequency stability mechanism and coordination control with large frequency deviation scenario[D].Jinan:Shandong University,2021.
- [16] PEPICIELLO A, VACCARO A. An optimizationbased method for estimating critical inertia in smart grids[C]//2019 IEEE International Conference on Systems,Man and Cybernetics(SMC),6-9 Oct.2019,Bari,Italy.IEEE,2019:2237-2241.
- [17]李东东,刘强,徐波,等.考虑频率稳定约束的新能源电力系统临界惯量计算方法[J].电力系统保护与控制,2021,49(22):24-33.LI Dongdong,LIU Qiang,XU Bo,et al. New energy power system critical inertia estimation method considering frequency stability constraints[J].Power System Protection and Control,2021,49(22):24-33.
- [18] MIRJALILI S,MIRJALILI S M,LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software,2014,69:46-61.
- [19]张晓凤,王秀英.灰狼优化算法研究综述[J].计算机科学,2019,46(3):30-38.ZHANG Xiaofeng,WANG Xiuying. Comprehensive review of grey wolf optimization algorithm[J]. Computer Science,2019,46(3):30-38.
- [20] MILANO F.A python-based software tool for power system analysis[C]//2013 IEEE Power&Energy Society General Meeting,21-25 Jul.2013,Vancouver,BC,Canada.IEEE,2013:1-5.
- [21] MILANO F.Power system modelling and scripting[M].Berlin,Heidelberg:Springer Berlin Heidelberg,2010.