基于神经网络的CFB锅炉灰渣含碳量预测Prediction of Carbon Content in CFB Ash Based on Neural Networks
陈斌,王树宇,刘林涛,朱伟,董瑀非
CHEN Bin,WANG Shuyu,LIU Lintao,ZHU Wei,DONG Yufei
摘要(Abstract):
建立神经网络子母模型用于实时预测CFB(循环流化床)锅炉灰渣平均含碳量,其中子模型通过煤质参数得到煤质燃尽特性指数,母模型通过锅炉运行参数与煤质燃尽特性指数预测灰渣含碳量的实时值,训练后子模型和母模型的MAE(平均绝对误差)分别为0.343 2和0.974 7。将某热电厂现场CFB锅炉性能试验数据代入神经网络模型进行计算,得到灰渣平均含碳量预测值与真实值的MAE为0.84%,锅炉效率预测值与真实值的MAE为0.15%,证明模型具有较好的泛化性。最后,建立一个直接将煤质参数和锅炉运行参数作为输入参数的神经网络模型,训练后模型的MAE为1.038 0,灰渣含碳量和锅炉效率的预测值与真实值的MAE分别为1.29%和0.23%,误差大于使用子模型的预测误差,验证了子模型的必要性。
The parent/sub-model of a neural network is established to monitor the average carbon content of CFB(circulating fluidized bed) ash in real time. The sub-model obtains the coal burnout characteristic index through the coal quality parameters,and the parent model predicts the real-time value of ash carbon content through the boiler operation parameters and coal burnout characteristic index. After training,the MAE(mean absolute error) of submodel and parent model are 0.343 2 and 0.974 7 respectively. By substituting the on-site boiler performance test data of a thermal power plant into the neural network model,the MAE between the predicted value and the real value of average carbon content in ash slag is 0.84%,and the MAE between the predicted value and the real value of boiler efficiency is 0.15%,which demonstrate the good generalization. Finally,a neural network model using coal quality parameters and boiler operation parameters as input parameters is established. The post-training MAE is1.0380,and the MAEs of predicted values and real values of boiler efficiency and carbon contents of the ash are1.29% and 0.23% respectively,and the errors are larger than those of the sub-model,which verifies the necessity of the sub-model.
关键词(KeyWords):
循环流化床锅炉;煤质燃尽特性指数;人工神经网络;灰渣含碳量
CFB;coal burnout characteristic index;artificial neural network;carbon content in ash
基金项目(Foundation):
作者(Author):
陈斌,王树宇,刘林涛,朱伟,董瑀非
CHEN Bin,WANG Shuyu,LIU Lintao,ZHU Wei,DONG Yufei
DOI: 10.19585/j.zjdl.202203012
参考文献(References):
- [1]朱海,王海涛.煤质特性对燃煤电厂炉型选择的影响[J].洁净煤技术,2012,18(6):49-52.
- [2]韩亚妮.煤质变化对循环流化床锅炉机组运行的影响[J].山西建筑,2016,42(34):118-119.
- [3]解海龙,张帅.锅炉飞灰含碳量监测的必要性及其技术的发展[J].科学技术与工程,2016,16(7):115-121.
- [4]王佳亮.基于灼烧失重法的飞灰含碳量在线监测系统的设计[D].秦皇岛:燕山大学,2016.
- [5]张扬.锅炉飞灰含碳量软测量[D].保定:华北电力大学,2019.
- [6]崔锐,国栋,李晓江.基于L-M算法优化BP神经网络的飞灰含碳量测量[J].山西电力,2017(3):49-51.
- [7]周昊,朱洪波,曾庭华,等.基于人工神经网络的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2002,22(6):97-101.
- [8]朱琎琦.基于BP神经网络的循环流化床锅炉燃烧效率优化[D].北京:华北电力大学,2020.
- [9]王月兰,马增益,尤海辉,等.基于自适应神经模糊推理系统的煤粉锅炉飞灰含碳量建模[J].热力发电,2018,47(1):26-32.
- [10]张绪炎.600 MW火电机组在线性能计算系统的开发[D].上海:上海发电设备成套设计研究所,2006.
- [11]乔源,王建峰,杨永存,等.基于神经网络的飞灰含碳量软测量模型及实现[J].电力科学与工程,2019,35(11):55-61.
- [12]索疆舜.CFB锅炉飞灰含碳量影响因素分析[J].热力发电,2016,45(7):84-87.
- [13]马天星,王恩禄,张伟,等.燃煤电站锅炉运行参数对其热效率影响的试验研究技术[J].锅炉技术,2006,6(6):21-25.
- [14]高芬芬,朱萍,顾煜炯,等.飞灰含碳量影响因素权重计算[J].电力科学与工程,2015,31(2):37-42.
- [15]白继亮,李斌,朱琎琦,等.基于BP神经网络的CFB锅炉飞灰含碳量建模[J].洁净煤技术,2020,26(增刊1):212-217.
- [16]叶兆青,鄢晓忠,卢坤杰,等.基于BP神经网络的超临界对冲火焰锅炉飞灰含碳量预测分析[J].锅炉制造,2014(5):1-9.
- [17]赵虹,王红岩,翁善勇,等.锅炉飞灰含碳量异常偏高的试验研究[J].动力工程,2004,24(6):785-788.
- [18]姜曼,杨司玥,刘定宜,等.中国各省可再生能源电力消纳量对碳排放的影响[J].电网与清洁能源,2020,36(7):87-95.