浙江电力

2025, v.44;No.350(06) 82-90

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于AQPSO算法的智能楼宇微电网优化调度
Optimal scheduling of smart building microgrids based on AQPSO

叶傲霜,李逸超,胥栋,杜佳玮,张宇华,汪健辉
YE Aoshuang,LI Yichao,XU Dong,DU Jiawei,ZHANG Yuhua,WANG Jianhui

摘要(Abstract):

为提升智能楼宇运行的经济性和低碳性,提出基于AQPSO(自适应量子粒子群优化)算法的智能楼宇微电网经济优化调度策略。首先,建立了包含光伏、风电和EV(电动汽车)的智能楼宇微电网模型,考虑功率平衡、温度舒适性和EV集群充放电总功率等约束条件,以楼宇运行周期内用能成本最小为目标。其次,通过自适应参数控制改进QPSO(量子粒子群优化)算法,并利用改进后的AQPSO算法对模型进行求解。最后,设置4种场景进行算例分析,结果表明,AQPSO算法在收敛速度和寻优能力上均优于传统算法,所提出的模型和优化调度策略能够有效降低楼宇运行成本、碳排放量及碳排放成本,提升了清洁能源利用率。
To enhance the economic efficiency and low-carbon performance of smart building operations, this paper proposes an optimal economic scheduling strategy for smart building microgrids based on the adaptive quantum particle swarm optimization(AQPSO). Firstly, a smart building microgrid model incorporating photovoltaic, wind power, and electric vehicle(EV) is established, considering constraints such as power balance, thermal comfort, and the total charging/discharging power of EV clusters, with the objective of minimizing energy costs over the building's operational cycle. Secondly, the improved quantum particle swarm optimization(QPSO) is improved through adaptive parameter control, and the AQPSO is employed to solve the model. Finally, four scenarios are set up for case analysis. The results demonstrate that the AQPSO outperforms traditional methods in terms of convergence speed and optimization capability. The proposed model and optimal scheduling strategy effectively reduce building operating costs, carbon emissions, and carbon emission costs, while improving the utilization rate of clean energy.

关键词(KeyWords): 智能楼宇微电网;车一网互动;自适应量子粒子群优化;优化调度
smart building microgrid;V2G;AQPSO;optimal scheduling

Abstract:

Keywords:

基金项目(Foundation): 上海市科委科技创新计划项目(22010501400)

作者(Author): 叶傲霜,李逸超,胥栋,杜佳玮,张宇华,汪健辉
YE Aoshuang,LI Yichao,XU Dong,DU Jiawei,ZHANG Yuhua,WANG Jianhui

DOI: 10.19585/j.zjdl.202506008

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享