浙江电力

2025, v.44;No.349(05) 101-111

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于深度强化学习的多能流建筑综合能源系统优化调度
Optimal scheduling of BIES with multi-energy flow coupling based on deep RL

夏旭华,杨建迪,施永涛
XIA Xuhua,YANG Jiandi,SHI Yongtao

摘要(Abstract):

建筑综合能源系统在满足用户侧多元负荷需求的同时,能够有效提升能效比,降低建筑的碳排放量。为进一步提高建筑综合能源系统的能源调度能力,提出一种基于深度强化学习的多能流建筑综合能源系统低碳经济优化调度方法。首先,建立可充分表征能源互动耦合特性的光储一体多能流建筑综合能源系统数学模型。其次,结合深度强化学习设计建筑综合能源系统运行调度策略的状态空间、动作空间和奖励函数,运用“柔性行动器-评判器”算法搭建低碳经济优化调度框架。最后,将所提方法应用到实际夏冬季典型日负荷场景中进行验证,结果表明:与同类方法相比,所提方法收敛速度更快、优化效果更稳定,能有效降低综合能源系统日内运行的能源成本及碳排放成本。
Building integrated energy systems(BIESs) can enhance energy efficiency ratio(EER) and reduce carbon emissions while meeting diverse user-side load demands. To further improve the energy dispatch capability of BIES, this paper proposes a low-carbon economic and optimal dispatch method for BIES with multi-energy flow coupling based on deep reinforcement learning(deep RL). Firstly, a mathematical model of a photovoltaic-storage integrated BIES with multi-energy flow coupling is established to fully characterize energy interaction and coupling characteristics. Secondly, the state space, action space, and reward function for the operational dispatch strategy are designed using deep RL, and a low-carbon economic and optimal dispatch framework is constructed using the soft actor-critic(SAC) algorithm. Finally, the proposed method is validated in typical daily load scenarios in summer and winter. Results demonstrate that, compared to similar methods, the proposed method achieves faster convergence, more stable optimization effects, and effectively reduces both daily energy costs and carbon emission costs in IES operations.

关键词(KeyWords): 深度强化学习;综合能源系统;调度优化;碳排放
deep RL;IES;scheduling optimization;carbon emission

Abstract:

Keywords:

基金项目(Foundation): 浙江省重点研发计划项目(2024C01018)

作者(Author): 夏旭华,杨建迪,施永涛
XIA Xuhua,YANG Jiandi,SHI Yongtao

DOI: 10.19585/j.zjdl.202505010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享