H2SO4/NH4HSO4作用下锅炉尾部受热面积灰成垢机理Scaling Mechanism of Fly Ash on Rear Heating Surfaces Under H2SO4/NH4HSO4
韩高岩,吕洪坤,谢娜,周培焱,李易炜,肖海平
HAN Gaoyan,LYU Hongkun,XIE Na,ZHOU Peiyan,LI Yiwei,XIAO Haiping
摘要(Abstract):
锅炉尾部受热面上的高强度垢影响了设备安全性和经济性。为阐明积灰成垢机理,进行了H_2SO_4/NH_4HSO_4与积灰的成垢实验,对灰垢样品进行扫描电镜形貌分析和X射线衍射成分分析,采用热力学平衡计算确定胶凝类物质。结果表明,H_2SO_4/NH_4HSO_4作用下灰粒表面产生絮状和针状结晶,粘连胶结为大块团聚体后形成灰垢,NH_4HSO_4作用下团聚固结更加明显。实验和热力学平衡计算表明,H_2SO_4与积灰反应生成石膏类硫酸盐胶凝材料;NH_4HSO_4与飞灰反应生成石膏类胶凝物质以及大量(NH_4)_2SO_4,具有更强结垢倾向。在H_2SO_4/NH_4HSO_4作用下,积灰反应生成的硫酸盐胶凝物质将松散灰粒粘连固结,导致低温受热面垢的形成。
The high-intensity scale on the heating surface of a boiler holds up its security and economic efficiency.To clarify the scaling mechanism,scaling experiments where H_2SO_4/NH_4HSO_4 reacted with fly ash were carried out.Scanning electron microscope morphology analysis and X-ray diffraction composition analysis were used to analyze the ash-scale morphology and composition supplemented with thermodynamics equilibrium calculation for determining cementing minerals which lead to scaling. The results showed that the flocculent and needle-like crystals formed on the surface of ash particles mixed with H_2SO_4/NH_4HSO_4;ash particles adhered and cemented into large agglomerates to form ash-scale,and agglomeration was more remarkable mixed with NH_4HSO_4. The experiment and thermodynamic equilibrium calculation showed that the fly ash reacted with H_2SO_4 to generate gypsum-like gelatinous sulfate substances;NH_4HSO_4 reacted with fly ash to generate gypsum-like gelatinous substances and a large amount of(NH_4)_2 SO_4 that tend to scaling. Under H_2SO_4/NH_4HSO_4,the gelatinous sulfates generated from actions of deposited ash consolidated the incompact ash particles,leading to the accumulation of ash scale on heating surface.
关键词(KeyWords):
飞灰;结垢;胶凝材料;H2SO4;NH4HSO4
fly ash;scaling;cementing material;H_2SO_4;NH_4HSO_4
基金项目(Foundation): 杭州意能电力技术有限公司科技项目(EPRD2020-08)
作者(Author):
韩高岩,吕洪坤,谢娜,周培焱,李易炜,肖海平
HAN Gaoyan,LYU Hongkun,XIE Na,ZHOU Peiyan,LI Yiwei,XIAO Haiping
参考文献(References):
- [1]池作和,潘维,李戈,等.600 MW回转式空气预热器冷端金属温度试验研究[J].中国电机工程学报,2002,22(11):129-131.
- [2]肖海平,漆聪,程齐勇,等.煤粉炉内SO3整体生成特性[J].动力工程学报,2018,38(11):908-913.
- [3]杨建国,杨炜樱,郑方栋,等.NH3和SO3对硫酸氢铵和硫酸铵生成的影响[J].燃料化学学报,2018,46(1):92-98.
- [4] MUZIO L,BOGSETH S,HIMES R,et al. Ammonium bisulfate formation and reduced load SCR operation[J].Fuel,2017,206:180-189
- [5] WILBURN R T,WRIGHT T L.SCR ammonia slip distribution in coal plant effluents and dependence upon S03[J].Power Plant Chemistry,2004,6(5):295-304.
- [6]李加护,王小涛,张猛,等.一种新的酸露点计算式及其现场实验验证[J].热力发电,2019,48(4):110-115.
- [7] ZHANG Y B,YAN Y,LIU J H,et al.Adsorption characteristics of sulfuric acid mist on fly ash in low-low temperature flue gas system[J].Energy Procedia,2017,142:3307-3312.
- [8] WEI W,SUN F Z,MA L.Effect of fine ash particles on formation mechanism of fouling covering heat exchangers in coal-fired power plants[J].Applied Thermal Engineering,2018,142:269-277.
- [9] SHI Y T,WANG X J,CHU D,et al. An experimental study of ash accumulation in flue gas[J].Advanced Powder Technology,2016,27(4):1473-1480.
- [10]刘建民,陈国庆,黄启龙,等.燃煤脱硝机组空气预热器蓄热片表面飞灰沉积板结机理研究[J].中国电机工程学报,2016,36(增刊1):132-139.
- [11]罗闽,赵伶玲,李偲宇.空气预热器硫酸氢铵积灰的数值研究[J].动力工程学报,2016,36(11):883-888.
- [12]颜鲁,孙奉仲,郑鹏.脱硝伴生硫酸氢铵对空预器壁面粘附机理的实验研究[J].中国电机工程学报,2020,40(20):6609-6617.
- [13]颜鲁,李秀财,孙奉仲,等.SCR脱硝伴生硫酸氢铵对飞灰颗粒特性影响的实验研究[J].中国电机工程学报,2019,39(10):2987-2994.
- [14]马双忱,邓悦,吴文龙,等.SCR脱硝副产物硫酸氢铵与空预器中飞灰反应特性[J].环境工程学报,2016,10(11):6563-6570.
- [15]孟韵,张军营,郑楚光,等.燃煤过程中微量元素形态转化的热力学模拟[J].煤炭转化,2002,25(3):6-10.
- [16] VIDALES B A,ATANES S E,D RíO-MERINO M,et al. Analysis of the improved water-resistant properties of plaster compounds with the addition of plastic waste[J].Construction and Building Materials,2020,230:116956.
- [17]陈绍华.硅酸盐水泥的高温凝固特性及深孔护壁堵漏材料研究[D].成都:成都理工大学,2020.
- [18]雷健康,王浩楠,赵伶玲.空气预热器蓄热板硫酸氢铵动态积灰模型[J].热力发电,2020,49(9):52-57.
- [19]刘宇钢,罗志忠,陈刚,等.低温省煤器及MGGH运行中存在典型问题分析及对策[J].东方电气评论,2016,30(2):31-35.
- [20]张知翔,许良,徐党旗,等.高硫煤机组低低温省煤器积灰特性研究[J].热力发电,2020,49(12):135-139.
- [21]秦阳,潘卫国,郭瑞堂,等.不同晶型Fe2O3催化H2O2湿法脱硝的实验研究[J].发电技术,2020(5):480-488.
- [22]唐诗洁,陆强,曲艳超,等.基于遗传算法优化BP神经网络的SCR脱硝系统催化剂体积设计[J].发电技术,2019(3):246-252.
- [23]王兴,蔡新春,白涛.某600 MW机组SCR脱硝装置喷氨管道磨损数值模拟分析[J].山西电力,2021(1):54-58.
- [24]赵永国,王军民,马洪涛.330 MW机组燃煤锅炉脱硝系统喷氨优化调整试验研究[J].山西电力,2020(1):67-70.
- [25]王猛,沈建军,涂安琪,等.300 MW机组SCR脱硝系统喷氨优化调整[J].内蒙古电力技术,2020(3):58-61.