基于支持向量机的主汽温趋势预测Trend Forecast of Main Steam Temperature Based on SVM
金安福
JIN Anfu
摘要(Abstract):
主汽温是火电机组热力系统中的重要参数,其大迟延、大惯性、时变性等特性使得主汽温的控制难以达到理想效果,准确预测主汽温趋势对改善其控制效果具有重要意义。通过采集现场运行数据,利用灰色关联分析确定主汽温的主要影响因素,再利用支持向量机对主汽温进行回归预测,预测结果与实际对象有较高的相关度,对主汽温调节、参数优化及机组运行有指导意义。
Main steam temperature is an important parameter of the thermodynamic system in thermal power units, whose characteristics such as large delay, large inertia, time-varying make it difficult to get an ideal control effect. It is very significant to predict the trend of the main steam temperature accurately to improve its control effectiveness. In this paper, based on the data collected on site, the main factors affecting the main steam temperature are detected by grey relational analysis, and then the main steam temperature is predicted by the support vector machine(SVM). The results show that the predicted results are highly correlated with the actual objects, possessing guiding significance for the main steam temperature regulation, parameter optimization and units operation.
关键词(KeyWords):
主汽温;灰色关联分析;SVM;回归预测
main steam temperature;gray correlation analysis;SVM;regression forecast
基金项目(Foundation):
作者(Author):
金安福
JIN Anfu
DOI: 10.19585/j.zjdl.2015.12.009
参考文献(References):
- [1]金以慧.过程控制[M].北京:清华大学出版社,1993.
- [2]张立刚,李海丽.基于最小二乘支持向量机的协调系统预测[J].仪器仪表学报,2008,29(4):785-788.
- [3]王定成,方廷健,高理富,等.支持向量机回归在线建模及应用[J].控制与决策,2003,8(1):89-95.
- [4]翟永杰,王静娴,周黎辉.基于模糊支持向量机的电力系统中期负荷预测[J].华北电力大学学报,2008,35(2):70-73.
- [5]邓聚龙.灰色控制系统[J].华中工学院学报,1982,10(3):9-18.
- [6]孙芳芳.浅议灰色关联度分析方法及其应用[J].科技信息,2010(17):364-366.
- [7]王宏志,陈帅,侍洪波.基于最小二乘支持向量机和PSO算法的电厂烟气含氧量软测量[J].热力发电,2008,37(3):35-38.
- [8]张向东,冯胜洋,王长江.基于网络搜索的支持向量机砂土液化预测模型[J].应用力学学报,2011,28(1):24-28.