浙江电力

2025, v.44;No.352(08) 78-87

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于教学强化机制的区域扩展互联电力系统自动发电控制方法
An automatic generation control method for cross-region interconnected power systems based on TR mechanism

史悦星,杨帆,李东东,邵心怡
SHI Yuexing,YANG Fan,LI Dongdong,SHAO Xinyi

摘要(Abstract):

区域扩展互联电力系统通过区域间协同调控可以提升电网频率稳定性。现有面向区域扩展互联电力系统的AGC(自动发电控制)研究中,基于数据驱动技术的学习方法未能有效利用区域扩展前的经验,存在模型训练效率不足的问题。针对此问题,提出一种基于TR-MATD3(教学强化机制与多智能体双重延迟深度确定性策略梯度)算法的AGC方法。一方面,在TR(教学强化)机制下,当电力系统区域扩展时,原区域的智能体通过点对点教学的方式对新加入区域的智能体进行指导,以加速其策略网络的收敛速度,并进一步提高算法的控制精度;另一方面,TR-MATD3算法引入双目标批判网络,解决强化学习中存在的Q值高估问题,从而提升智能体策略网络的控制性能。仿真结果表明,相较于其他算法,TR-MATD3算法能够使固定电力系统区域的|ACE|减少58%~79.68%,并使扩展区域的智能体离线训练时间减少47.13%~51.56%,|A_(CE)|减少23.33%~63.72%,表现出良好的可扩展性和控制性能。
Cross-region interconnected power systems improve grid frequency stability through coordinated interregional regulation. However, existing automatic generation control(AGC) studies fail to effectively leverage the pre-expansion operational experience in data-drive learning approaches, leading to suboptimal model training efficiency. To address this issue, this paper proposes a teaching reinforcement-based multi-agent twin delayed deep deterministic policy gradient(TR-MATD3) algorithm for AGC. This method features:(1) A Teaching Reinforcement(TR) mechanism where experienced agents provide point-to-point guidance to newly added regional agents during system expansion, accelerating policy network convergence while improving control accuracy;(2) A dual-critic network to mitigate Q-value overestimation in reinforcement learning, enhancing control performance of agent policy networks. Simulation results demonstrate that compared to other algorithms, the TR-MATD3 algorithm achieves 58%~79.68% reduction in |A_(CE)| for existing power system regions, 47.13%~51.56% decrease in offline training time, and 23.33%~63.72% improvement in |A_(CE)| performance. These metrics confirm the solution's superior scalability and control performance.

关键词(KeyWords): 互联电力系统;自动发电控制;教学强化机制;多智能体强化学习;双目标批判网络
interconnected power systems;AGC;TR mechanism;multi-agent reinforcement learning;dual-critic network

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(52377111)

作者(Author): 史悦星,杨帆,李东东,邵心怡
SHI Yuexing,YANG Fan,LI Dongdong,SHAO Xinyi

DOI: 10.19585/j.zjdl.202508008

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享