浙江电力

2025, v.44;No.345(01) 124-132

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于高光谱成像的复合绝缘子表面污秽成分识别方法
A method for identifying surface contamination components of composite insulators based on hyperspectral imaging

缪金,秦军,陈峻宇,吴俊锋,任明,刘润宇
MIAO Jin,QIN Jun,CHEN Junyu,WU Junfeng,REN Ming,LIU Runyu

摘要(Abstract):

复合绝缘子表面的积污成分是影响污秽闪络电压的重要因素。为了探索更为高效且实用化的典型污秽成分识别方法,提出了一种基于高光谱成像的污秽成分识别方法。首先,通过标准人工染污方式制备了7种典型污秽成分的单一或混合积污硅橡胶样品,并在模拟日光条件下获得这些积污样品的高光谱二维像元数据。接着,通过在二维像元维度引入KPCA(核主成分分析),有效提取典型污秽成分的像元数据特征,并在光谱维度上基于包络线消除和KPCA建立三维特征子空间。最后,引入KSVM(核支持向量机)算法实现了对7种污秽成分像元的识别。结果表明,该方法对硅橡胶表面积污成分的识别准确率达到了93.75%,而对于混合污秽成分的识别准确率高于80%。研究成果为复合绝缘子污秽成分的现场快速分析和闪络特性评估提供了一种新手段,同时也为带电巡线和实验室污秽度测定提供了参考。
The surface contamination components of composite insulators significantly influence the pollution flashover voltage. To develop a more efficient and practical method for identifying typical contamination components, this paper proposes a hyperspectral imaging-based identification method. Firstly, silicone rubber samples with single or mixed contamination of seven typical pollutants are prepared using standard artificial contamination methods, and hyperspectral 2D pixel data of these samples are acquired under simulated sunlight conditions. Next, kernelized principal component analysis(KPCA) is introduced at the 2D pixel level to effectively extract pixel data features of the typical contamination components. A 3D feature subspace is then established in the spectral dimension using envelope elimination and KPCA. Finally, the kernel support vector machine(KSVM) algorithm is employed to identify the pixel features of the seven contamination components. Results show that the proposed method achieve an identification accuracy of 93.75% for contamination components on the silicone rubber surface and over 80% for mixed contaminants. This study provides a novel approach for rapid on-site analysis of contamination components and flashover characteristics of composite insulators, as well as a reference for live-line inspections and pollution degree measurements in laboratories.

关键词(KeyWords): 绝缘硅橡胶;绝缘积污;反射光谱图像;污秽度;光谱特征提取
insulating silicone rubber;insulation contamination;reflective spectral imaging;contamination degree;spectral feature extraction

Abstract:

Keywords:

基金项目(Foundation): 国网江苏省电力有限公司孵化项目(JF2024002)

作者(Author): 缪金,秦军,陈峻宇,吴俊锋,任明,刘润宇
MIAO Jin,QIN Jun,CHEN Junyu,WU Junfeng,REN Ming,LIU Runyu

DOI: 10.19585/j.zjdl.202501013

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享