基于GCN-LSTM的电动汽车负荷预测方法An EV load forecasting method for using GCN-LSTM
黄健,陈建红,何剑杰,吴燕,万修,陈凡
HUANG Jian,CHEN Jianhong,HE Jianjie,WU Yan,WAN Xiu,CHEN Fan
摘要(Abstract):
针对传统的电动汽车负荷预测方法未能充分利用电动汽车负荷之间的空间相关性,负荷预测精度较低的问题,提出一种基于GCN-LSTM(图卷积神经网络与长短期记忆网络)的电动汽车负荷预测方法。首先,构建图数据来描述充电站在地域上的分布,并使用GCN提取所研究充电站与相邻充电站之间的空间依赖信息;其次,将不同时刻GCN提取到的信息构成时间序列,输入LSTM网络,从而对电动汽车充电负荷进行预测。最后,以中国某市城区内的充电站负荷数据为例进行算例分析,结果表明所提出的方法能有效提高预测精度。
Traditional electric vehicle(EV) load forecasting methods often fail to fully utilize the spatial correlation among EV loads, resulting in low forecasting accuracy. To address this issue, a load forecasting method using graph convolution network-long short-term memory(GCN-LSTM) is proposed. Firstly, graph data is constructed to describe the distribution of charging stations in the region, and the spatial dependency information between the charging station under study and neighboring charging stations is extracted using a GCN. Secondly, the information extracted by the GCN at different time periods is formed into a time series and input into the LSTM to forecast the EV charging loads. Finally, the proposed algorithm is validated by using load data from charging stations in an urban area in China as an example. The results show that the proposed method can effectively improve forecasting accuracy.
关键词(KeyWords):
电动汽车;负荷预测;时空相关性;图卷积神经网络;长短期记忆网络
EV;load forecasting;spatiotemporal correlation;GCN;LSTM
基金项目(Foundation): 国家自然科学基金(51577086)
作者(Author):
黄健,陈建红,何剑杰,吴燕,万修,陈凡
HUANG Jian,CHEN Jianhong,HE Jianjie,WU Yan,WAN Xiu,CHEN Fan
DOI: 10.19585/j.zjdl.202412006
参考文献(References):
- [1]于霄宇,纪正森,嵇灵,等.双碳目标下我国电动汽车碳减排贡献潜力分析[J].智慧电力,2024,52(2):25-31.YU Xiaoyu,JI Zhengsen,JI Ling,et al. Analysis on the contribution potential of carbon emission reduction of electric vehicles in China under the dual-carbon target[J].Smart Power,2024,52(2):25-31.
- [2]黄学良,刘永东,沈斐,等.电动汽车与电网互动:综述与展望[J].电力系统自动化,2024,48(7):3-23.HUANG Xueliang,LIU Yongdong,SHEN Fei,et al.Vehicle to grid:review and prospect[J].Automation of Electric Power Systems,2024,48(7):3-23.
- [3]黄南天,孙赫宏,王圣元,等.计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测[J/OL].中国电机工程学报,1-12[2024-02-20].http://kns.cnki.net/kcms/detail/11.2107.tm.20240115.1353.007.html.HUANG Nantian,SUN Hehong,WANG Shengyuan,et al. Short-term time-space prediction of electric vehicle charging load considering the differentiated coupling association of multiple public charging stations[J/OL]. Proceedings of the CSEE,1-12[2024-02-20].http://kns.cnki.net/kcms/detail/11.2107.tm.20240115.1353.007.html.
- [4]肖丽,谢尧平,胡华锋,等.基于V2G的电动汽车充放电双层优化调度策略[J].高压电器,2022,58(5):164-171.XIAO Li,XIE Yaoping,HU Huafeng,et al.Two-level optimization scheduling strategy for EV’s charging and discharging based on V2G[J]. High Voltage Apparatus,2022,58(5):164-171.
- [5]张夏韦,梁军,王要强,等.电动汽车充电负荷时空分布预测研究综述[J].电力建设,2023,44(12):161-173.ZHANG Xiawei,LIANG Jun,WANG Yaoqiang,et al.Overview of research on spatiotemporal distribution prediction of electric vehicle charging[J].Electric Power Construction,2023,44(12):161-173.
- [6]王海鑫,袁佳慧,陈哲,等.智慧城市车-站-网一体化运行关键技术研究综述及展望[J].电工技术学报,2022,37(1):112-132.WANG Haixin,YUAN Jiahui,CHEN Zhe,et al.Review and prospect of key techniques for vehicle-station-network integrated operation in smart city[J]. Transactions of China Electrotechnical Society,2022,37(1):112-132.
- [7]刘志强,张谦,朱熠,等.计及车-路-站-网融合的电动汽车充电负荷时空分布预测[J].电力系统自动化,2022,46(12):36-45.LIU Zhiqiang,ZHANG Qian,ZHU Yi,et al. Spatialtemporal distribution prediction of charging loads for electric vehicles considering vehicle-road-station-grid integration[J].Automation of Electric Power Systems,2022,46(12):36-45.
- [8]龙雪梅,杨军,吴赋章,等.考虑路网-电网交互和用户心理的电动汽车充电负荷预测[J].电力系统自动化,2020,44(14):86-93.LONG Xuemei,YANG Jun,WU Fuzhang,et al.Prediction of electric vehicle charging load considering interaction between road network and power grid and user’s psychology[J].Automation of Electric Power Systems,2020,44(14):86-93.
- [9]张琳娟,许长清,王利利,等.基于OD矩阵的电动汽车充电负荷时空分布预测[J].电力系统保护与控制,2021,49(20):82-91.ZHANG Linjuan,XU Changqing,WANG Lili,et al.OD matrix based spatiotemporal distribution of EV charging load prediction[J].Power System Protection and Control,2021,49(20):82-91.
- [10]卢少平,应黎明,王霞,等.基于用户出行模拟的电动汽车快充站负荷预测及其优化调度[J].电力建设,2020,41(11):38-48.LU Shaoping,YING Liming,WANG Xia,et al.Charging load prediction and optimized scheduling of electric vehicle quick charging station according to user travel simulation[J].Electric Power Construction,2020,41(11):38-48.
- [11]张琳娟,许长清,王利利,等.基于OD矩阵的电动汽车充电负荷时空分布预测[J].电力系统保护与控制,2021,49(20):82-91.ZHANG Linjuan,XU Changqing,WANG Lili,et al.OD matrix based spatiotemporal distribution of EV charging load prediction[J].Power System Protection and Control,2021,49(20):82-91.
- [12]张夏韦,梁军,王要强,等.电动汽车充电负荷时空分布预测研究综述[J].电力建设,2023,44(12):161-173.ZHANG Xiawei,LIANG Jun,WANG Yaoqiang,et al.Overview of research on spatiotemporal distribution prediction of electric vehicle charging[J].Electric Power Construction,2023,44(12):161-173.
- [13]龚钢军,安晓楠,陈志敏,等.基于SAE-ELM的电动汽车充电站负荷预测模型[J].现代电力,2019,36(6):9-15.GONG Gangjun,AN Xiaonan,CHEN Zhimin,et al.Model of load forecasting of electric vehicle charging station based on SAE-ELM[J].Modern Electric Power,2019,36(6):9-15.
- [14]赵厚翔,沈晓东,吕林,等.基于GAN的负荷数据修复及其在EV短期负荷预测中的应用[J].电力系统自动化,2021,45(16):143-151.ZHAO Houxiang,SHEN Xiaodong,LYU Lin,et al.Load data restoration based on generative adversarial network and its application in short-term load forecasting of electric vehicle[J].Automation of Electric Power Systems,2021,45(16):143-151.
- [15]王哲,万宝,凌天晗,等.基于谱聚类和LSTM神经网络的电动公交车充电负荷预测方法[J].电力建设,2021,42(6):58-66.WANG Zhe,WAN Bao,LING Tianhan,et al. Electric bus charging load forecasting method based on spectral clustering and LSTM neural network[J]. Electric Power Construction,2021,42(6):58-66.
- [16] SHUKLA A,GUPTA A K. Electric load forecasting through CNN:a deep learning approach considering weather data[C]//2022 IEEE 10th Power India International Conference(PIICON),25-27 Nov. 2022,New Delhi,India.IEEE,2023:1-6.
- [17]鲍琼,谭旭,屈琦凯,等.基于用户时空活动与模糊决策的电动汽车充电需求预测[J].东南大学学报(自然科学版),2022,52(6):1209-1218.BAO Qiong,TAN Xu,QU Qikai,et al.Prediction of electric vehicle charging demand based on user space-time activities and fuzzy decision-making[J].Journal of Southeast University(Natural Science Edition),2022,52(6):1209-1218.
- [18] REN X Y,YUAN S X.GCN-LSTM combined model for urban link mean speed prediction in the regional traffic network[C]//2022 IEEE Intl Conf on Dependable,Autonomic and Secure Computing,Intl Conf on Pervasive Intelligence and Computing,Intl Conf on Cloud and Big Data Computing,Intl Conf on Cyber Science and Technology Congress(DASC/PiCom/CBDCom/CyberSciTech),10-15 Sep.2022,Falerna,Italy.IEEE,2022:1-7.
- [19] YU B,LEE Y J,SOHN K.Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network(GCN)[J].Transportation Research Part C:Emerging Technologies,2020,114:189-204.
- [20] YU Y,SI X S,HU C H,et al.A review of recurrent neural networks:LSTM cells and network architectures[J].Neural Computation,2019,31(7):1235-1270.
- [21]韩升科,胡飞虎,陈之腾,等.基于GCN-LSTM的日前市场边际电价预测[J].中国电机工程学报,2022,42(9):3276-3286.HAN Shengke,HU Feihu,CHEN Zhiteng,et al. Day ahead market marginal price forecasting based on GCNLSTM[J].Proceedings of the CSEE,2022,42(9):3276-3286.
- [22]邹智,吴铁洲,张晓星,等.基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J].高电压技术,2022,48(10):3935-3945.ZOU Zhi,WU Tiezhou,ZHANG Xiaoxing,et al. Shortterm load forecast based on Bayesian optimized CNNBiGRU hybrid neural networks[J]. High Voltage Engineering,2022,48(10):3935-3945.