浙江电力

2024, v.43;No.344(12) 68-76

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于GMM-FHMM的工业产线非介入式负荷辨识
Non-intrusive load monitoring for industrial production line based on GMM-FHMM

朱亮,支妍力,梅贱生,余萌,胡琛,徐超群
ZHU Liang,ZHI Yanli,MEI Jiansheng,YU Meng,HU Chen,XU Chaoqun

摘要(Abstract):

非介入式负荷辨识对于支撑负荷预测、需求响应等应用的开展具有重要意义。针对产线型工业负荷用户子设备独立分解困难的问题,依托产线内设备联动运行的特点,提出了以产线为分解单位的非介入式负荷辨识方案。基于GMM(高斯混合模型)的因子化隐马尔可夫算法,实现了产线级负荷的细粒度呈现。同时,依据工业产线负荷总体规律稳定的特点,提出状态转移概率时间分段的分解模型构建方法,进一步了提升负荷辨识精度。实验结果表明,文中所提模型分别在多状态建模和时间分段阶段取得了性能提升,部分产线上的负荷辨识误差指标最终达到了近20%的下降。
Non-intrusive load monitoring plays a significant role in supporting applications such as load forecasting and demand response. To address the challenge of independently decomposing sub-equipment in industrial load users with production lines, a non-intrusive load monitoring(NILM) scheme is proposed, using the production line as the decomposition unit, based on the interlinked operation of equipment within the line. A factorized hidden Markov model(FHMM), based on Gaussian mixture model(GMM), is employed to achieve a fine-grained representation of load at the production line level. Additionally, a time-segmented state transition probability decomposition model is developed, leveraging the stable overall load patterns of industrial production lines, to further enhance load monitoring accuracy. Experimental results demonstrate that the proposed model significantly improves performance in both multi-state modeling and time segmentation, with load monitoring error metrics on some production lines ultimately reduced by nearly 20%.

关键词(KeyWords): 非介入式负荷辨识;工业产线;因子化隐马尔可夫模型;高斯混合模型;状态转移概率
non-intrusive load monitoring;industrial production line;FHMM;GMM;state transition probability

Abstract:

Keywords:

基金项目(Foundation): 国家电网有限公司科技项目(521852230006)

作者(Author): 朱亮,支妍力,梅贱生,余萌,胡琛,徐超群
ZHU Liang,ZHI Yanli,MEI Jiansheng,YU Meng,HU Chen,XU Chaoqun

DOI: 10.19585/j.zjdl.202412007

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享