富氧燃烧燃气轮机系统设计与变工况性能分析Design of Oxygen-enriched Gas Turbine System and Performance Analysis under Different Operating Conditions
梁胜莹,高建强,马明皓
LIANG Shengying,GAO Jianqiang,MA Minghao
摘要(Abstract):
随着分布式能源系统的快速发展,燃气轮机系统的设计及研究得到广泛关注。同时,富氧燃烧技术可为燃气轮机的清洁燃烧提供技术方案,因此基于富氧燃烧燃气轮机系统,先分模块对燃气轮机主要部件进行数学建模。其次,采用EBSILON仿真软件搭建富氧燃烧燃气轮机的系统模型,计算得到机组的最佳压比为π=11.18。最后,对富氧燃烧燃气轮机进行变工况分析,分析了不同负荷、压比运行时,不同运行方案对机组的整体热力性能的影响;进行助燃剂O_2变工况分析。结果表明:在助燃剂O_2质量分数低于22%时,机组比功随着助燃剂中O_2质量分数的提高而增大;在O_2质量分数高于22%时,机组比功基本维持恒定,其数值595 kJ/kg,机组效率随着助燃剂O_2质量分数的提高而增大。
With the rapid development of distributed energy system, the design and research of gas turbine system have attracted wide attention. Oxygen enriched combustion technology provides a technical solution for the clean combustion of gas turbines. Firstly, on the basis of the oxygen enriched gas turbine system, the main components of the gas turbine are mathematically modelled. Secondly, EBSILON is used to build the model of oxygen enriched gas turbine. It is calculated that the optimal pressure ratio of the unit is: π=11.18.Finally, the variable conditions of oxygen enriched gas turbine system are analyzed, and the influence of different operation schemes on the whole thermal performance of the unit is analyzed in the case of different load and pressure ratios. The paper discusses the influence of the concentration of oxidizer O_2 on the unit performance and the results show that When the mass fraction of O_2 is below 22%, the unit specific power increases with the increase of O_2 mass fraction in the oxidizer. When the mass fraction of O_2 in the oxidizer is higher than 22%, the unit specific power remains almost constant. The numerical value is 595 kJ/kg, and the unit efficiency increases with the increase of the mass fraction of the oxidizer O_2.
关键词(KeyWords):
富氧燃烧;燃气轮机;热力计算;性能分析
oxygen-enriched combustion;gas turbine;thermal calculation;performance analysis
基金项目(Foundation): 河北省自然科学基金(F2012502068)
作者(Author):
梁胜莹,高建强,马明皓
LIANG Shengying,GAO Jianqiang,MA Minghao
DOI: 10.19585/j.zjdl.201810012
参考文献(References):
- [1]LIU C Y,CHEN G,SIP C N,et al.Characteristics of oxyfuel combustion in gas turbines[J].Applied Energy,2012,89(1):387-394.
- [2]KEZ V,LIU F,CONSALVI J L,et al.A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2016(172):121-133.
- [3]KRIEGER G C,CAMPOS A P V,Takehara M D B,et al.Numerical simulation of oxy-fuel combustion for gas tur bine applications[J].Applied Thermal Engineering,2015(78):471-481.
- [4]王福珍,刘石,任晓辰,等.微燃机富氧燃烧室NOX排放的数值研究[J].华东电力,2014,42(2):406-411.
- [5]王能,刘石.微型燃气轮机富氧燃烧室数值及试验研究[J].燃烧科学与技术,2014,20(3):276-282.
- [6]田晓晶,崔玉峰,房爱兵,等.CH4/O2/H2O燃气轮机富氧燃烧特性[J].燃烧科学与技术,2013,19(5):413-417.
- [7]张杨林子.燃气-蒸汽联合循环机组建模和变工况性能研究[D].北京:华北电力大学,2017.
- [8]郑炯智,张国强,许彦平,等.顶底循环参数对燃气-蒸汽联合循环全工况性能影响分析[J].中国电机工程学报,2016,36(23):6418.
- [9]吴虎.燃气涡轮机特性分析与计算[M].西安:西北工业大学出版社,2014.
- [10]任其智,赵小宁.PG9351FA燃气轮机原理与应用教程[M].北京:电子工业出版社,2014.
- [11]张世铮.燃气热力性质的数学公式表示法[J].工程热物理学报,1980(1):10-16.
- [12]郎继生,于荣生.燃气-蒸汽联合循环热力特性计算分析[C]//中国工程热物理学会年会论文集,1985.
- [13]高建强,赵军友,范晓颖.单轴燃气-蒸汽联合循环机组蒸汽与燃气功率比在线计算方法[J].热力发电,2008,37(11):71-75.
- [14]ABRAHAM,M B,ASBURY,et al.Coal-oxygen process provides CO/sub 2/for enhanced recovery[J].Oil Gas J.;(United States),1982(80):11.
- [15]高建强,裴闪,吴迎光.单轴燃气轮机模块化仿真模型及其运行特性研究[J].华北电力大学学报,2006(5):52-55.
- [16]杜莹莹.中低热值燃料多轴燃气轮机热力性能模拟[D].北京:中国科学院研究生院(工程热物理研究所),2013.
- [17]邱丽霞,郝艳红.一种耦合燃气轮机的富氧燃烧系统技术经济性能分析[J].机械工程报,2016,52(18):153-158.
- [18]贾磊.富氧燃烧技术应用于微型燃气轮机的研究[D].北京:华北电力大学,2013.
- [19]李笑飞.压力环境下天然气预混富氧燃烧特性数值模拟[D].北京:华北电力大学,2017.
- [20]赵士杭.燃气轮机循环与变工况性能[M].北京:清华大学出版社,1993.
- [21]忻建华,钟芳源.燃气轮机设计基础[M].上海:上海交通大学出版社,2015.