浙江电力

2018, v.37;No.268(08) 15-20

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于自编码网络和经济增长数据的工业负荷预测模型
Industrial Load Forecasting Model Based on Auto-encoder and Economic Growth Rate

孙钢,杨宁,柳文轩,吴磊,韩蕾,赵俊华
SUN Gang,YANG Ning,LIU Wenxuan,WU Lei,HAN Lei,ZHAO Junhua

摘要(Abstract):

考虑到产业发展与用电量之间的显著相关性,采用自动编码器网络这一深度学习方法来研究电力消费与经济发展之间的关系。研究了如何根据经济增长数据预测工业用电量。算例试验研究结果表明:自动编码器网络算法在大多数情况下比一般的线性ARMA方法具有更高的精度;统计上,第二产业几乎所有行业都高度依赖电力消费,其电力消费与其增长率呈非线性正相关。
Considering the significant correlation between industrial development and electricity consumption,this paper employs auto-encoder a deep learning method, to study the relationship between electricity consumption and economic development. This paper also investigates how to forecast the industrial electricity consumption based on economic growth data. The case study show that the AE algorithm demonstrates higher accuracies in most cases than common linear ARMA method; statistically, almost all the sectors in the secondary industry are highly dependent on the electricity consumption, and their electricity consumption is nonlinearly and positively correlated with their growth rate.

关键词(KeyWords): 行业电耗;第二产业;经济增长;自编码网络;预测
electric consumption;secondary industry;economic growth;auto-encoder;forecasting

Abstract:

Keywords:

基金项目(Foundation): 深圳市科技创新委员会支持项目(GJHZ20160301165723718,JCYJ20170410172224515);; 浙江华云信息科技有限公司科技项目

作者(Author): 孙钢,杨宁,柳文轩,吴磊,韩蕾,赵俊华
SUN Gang,YANG Ning,LIU Wenxuan,WU Lei,HAN Lei,ZHAO Junhua

DOI: 10.19585/j.zjdl.201808003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享