浙江电力

2025, v.44;No.352(08) 88-98

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于SAX-MHA-GCN的区域分布式光伏超短期功率预测
Ultra-short-term power forecasting for regional DPV systems based on SAX-MHA-GCN

唐雅洁,龚迪阳,林达,陈乐祺,邵方格
TANG Yajie,GONG Diyang,LIN Da,CHEN Leqi,SHAO Fangge

摘要(Abstract):

提高分布式光伏超短期功率预测的准确性对于优化电网实时调度、保障供电可靠性及制定电力市场竞争策略具有重要意义。因此,提出一种基于SAX(符号聚合近似)-MHA(多头注意力)-GCN(图卷积网络)的区域分布式光伏超短期功率预测方法。首先,选取近时段分布式光伏出力时序数据作为输入特征集,并利用SAX算法对其进行压缩,构建图卷积特征矩阵与邻接矩阵。接着,构建深度融合的MHA-GCN算法框架,在每个图卷积块中,先通过时空多头注意力机制层提取特征间的依赖关系,再进行空间图卷积与时间卷积运算,经残差连接后得到模块输出。然后,通过全连接层以及SAX的反向过程,得到超短期功率预测值。最后,以浙江某区域分布式光伏集群为实验对象进行算例分析,结果表明,所提方法在区域整体和单场站预测效果均优于传统方法,有效提升了预测精度与预测时效性。
Improving the accuracy of ultra-short-term power forecasting for distributed photovoltaic(DPV) systems is of great significance for optimizing real-time grid dispatch, ensuring power supply reliability, and formulating electricity market competition strategies. Therefore, this paper proposes an ultra-short-term power forecasting method for regional DPV based on symbolic aggregate approximation(SAX), multi-head attention(MHA), and graph convolutional network(GCN). Firstly, the recent time-series data of DPV system output is selected as the input feature set, and the SAX method is utilized to compress the data, constructing the feature matrix and adjacency matrix of the GCN. Subsequently, a deeply integrated MHA-GCN framework is built. In each graph convolution block, the spatio-temporal MHA mechanism layer is first employed to extract the dependencies between features, followed by spatial graph convolution and temporal convolution operations. The module output is then obtained through residual connections. Afterwards, the ultra-short-term power forecasting values are derived via a fully connected layer and the inverse process of the SAX. Finally, case studies are conducted on a DPV system cluster in a certain region of Zhejiang Province. The results demonstrate that the proposed method outperforms traditional methods in both regional and single-station forecasting, effectively enhancing forecasting accuracy and timeliness.

关键词(KeyWords): 区域分布式光伏;超短期功率预测;符号聚合近似;多头注意力机制;时空图卷积网络
DPV system;ultra-short-term power forecasting;SAX;MHA mechanism;spatio-temporal GCN

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金联合基金重点项目(U24B2080);; 国网浙江省电力有限公司科技项目(5211DS230003)

作者(Author): 唐雅洁,龚迪阳,林达,陈乐祺,邵方格
TANG Yajie,GONG Diyang,LIN Da,CHEN Leqi,SHAO Fangge

DOI: 10.19585/j.zjdl.202508009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享