浙江电力

2023, v.42;No.325(05) 76-84

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于WRSR和BOA-Catboost的电力用户分类模型研究
Research on a power user classification model based on WRSR and BOA-Catboost

仲赞,邢翼,俞伟,李健,刘广生
ZHONG Zan,XING Yi,YU Wei,LI Jian,LIU Guangsheng

摘要(Abstract):

售电企业对电力用户进行合理评估是开展售电业务的关键。针对当前评估方法存在的评估不全面、应用性不强等问题,提出一种基于WRSR(加权秩和比)和Catboost算法的电力用户分类模型。首先使用WRSR对现有电力用户进行分档并标记;接着使用Catboost算法学习分类规律,构建分类器,同时采用BOA(贝叶斯优化算法)优化Catboost的超参数,提升分类效果;最后根据模型分析每个特征的重要程度,并按重要性分数对用户特征进行筛选。实验结果表明:该方法能实现电力用户的合理分类;所提分类模型与其他机器学习模型相比准确性更高,可解释性更好。
Power sales business stands on reasonable assessment of power users by power sales enterprises. The present assessment methods are incomprehensive and less applied. Therefore, a power user classification model is proposed based on WRSR(weighted rank-sum ratio) and Catboost algorithm. Firstly, the existing power users are graded and labeled using WRSR. Then, the Catboost algorithm is used to learn the classification law and construct a classifier. The hyperparameters of Catboost are optimized using BOA(Bayesian optimization algorithm) to improve the classification effect. Finally, the importance of each feature is analyzed according to the model, and the user features are filtered by the importance scores. The experimental results show that the method can reasonably classify power users, and the proposed classification model is superior to other machine learning models in accuracy and interpretability.

关键词(KeyWords): 电力用户标签;加权秩和比;用户分类;Catboost;贝叶斯优化
power user labels;weighted rank-sum ratio;user classification;Catboost;Bayesian optimization

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211UZ2000K2)

作者(Author): 仲赞,邢翼,俞伟,李健,刘广生
ZHONG Zan,XING Yi,YU Wei,LI Jian,LIU Guangsheng

DOI: 10.19585/j.zjdl.202305009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享