浙江电力

2025, v.44;No.353(09) 58-69

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于TimeVAE和迁移学习的综合能源系统负荷预测方法
A load forecasting method for IESs using TimeVAE and transfer learning

陈哲,周金辉,靳东辉,陈积光,马恒瑞,张嘉鑫,朱苏洵
CHEN Zhe,ZHOU Jinhui,JIN Donghui,CHEN Jiguang,MA Hengrui,ZHANG Jiaxin,ZHU Suxun

摘要(Abstract):

提出一种基于TimeVAE(时间变分自动编码器)和TL(迁移学习)的集成学习方法,用于解决IES(综合能源系统)中新建系统因历史数据稀缺导致负荷预测精度下降的问题。通过Time VAE的变分自编码器生成负荷数据,增强目标域数据集的多样性;利用具有丰富历史数据的源域知识,通过冻结训练策略优化目标域负荷预测模型。基于亚利桑那州立大学不同校区IES的数据,验证了所提方法的有效性。实验结果表明,该方法在小样本情况下显著提升了负荷预测的精度,为实现IES负荷预测的高效性和可靠性提供了重要参考。
In this paper, an integrated learning approach based on time variational autoencoder(TimeVAE) and transfer learning(TL) is proposed to address the accuracy degradation in integrated energy systems(IESs) load forecasting caused by insufficient historical data in newly built systems. The TimeVAE-based variational autoencoder generates load data to enhance the diversity of the target-domain dataset, while the source-domain knowledge with abundant historical data is leveraged to optimize the target-domain load forecasting model through a frozen training strategy. Based on IES data from multiple campuses of Arizona State University, the effectiveness of the proposed method is validated. Experimental results demonstrate that the method significantly improves load forecasting accuracy under few-shot conditions, providing critical references for achieving efficient and reliable IES load forecasting.

关键词(KeyWords): TimeVAE;迁移学习;小样本负荷预测;综合能源系统;数据增强;冻结训练策略;多能负荷预测
TimeVAE;transfer learning;few-shot load forecasting;IES;data augmentation;frozen training strategy;multi-energy load forecasting

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(61933005);; 国网浙江省电力有限公司科技项目(2006CB200303)

作者(Author): 陈哲,周金辉,靳东辉,陈积光,马恒瑞,张嘉鑫,朱苏洵
CHEN Zhe,ZHOU Jinhui,JIN Donghui,CHEN Jiguang,MA Hengrui,ZHANG Jiaxin,ZHU Suxun

DOI: 10.19585/j.zjdl.202509006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享