浙江电力

2024, v.43;No.343(11) 90-96

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于CNN-LSSVM的电力系统虚假数据攻击检测
Detection of false data injection attacks against power systems using a CNN-LSSVM model

吴莉艳,孙开元,陈坤,岑海凤,叶小晖,王新宇
WU Liyan,SUN Kaiyuan,CHEN kun,CEN Haifeng,YE Xiaohui,WANG Xinyu

摘要(Abstract):

新型信息物理电力系统是实现双碳目标的关键环节,但针对状态估计的新型虚假数据攻击可以欺骗现有安全检测机制,给电力系统安全运行带来巨大挑战。为检测状态估计中虚假数据,以电网交流模型为研究对象分析恶意攻击的欺骗特性,结合CNN(卷积神经网络)提取数据的空间特征优势和LSSVM(最小二乘支持向量机)的数据分类能力,构建了基于CNN-LSSVM的攻击检测模型。基于IEEE 14总线电力系统数据验证了所提出的CNN-LSSVM检测模型的有效性,其检测准确率达到94.6%。
The new cyber-physical power system is crucial for achieving dual carbon goals. However, novel false data injection attacks targeting state estimation can bypass existing security detection mechanisms, significantly challenging the secure operation of power systems. To detect false data in state estimation, the deceptive characteristics of malicious attacks are analyzed using the AC power grid model as the research object. By combining the data spatial feature extraction capabilities of convolutional neural networks(CNN) with the data classification abilities of least squares support vector machine(LSSVM), this paper develops an attack detection model using CNN-LSSVM. The model's effectiveness is verified using data from IEEE 14-bus power system, achieving a detection accuracy of 94.6%.

关键词(KeyWords): 信息物理电力系统;攻击检测;CNN;LSSVM
cyber-physical power system;attack detection;CNN;LSSVM

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金青年项目(62103357)

作者(Author): 吴莉艳,孙开元,陈坤,岑海凤,叶小晖,王新宇
WU Liyan,SUN Kaiyuan,CHEN kun,CEN Haifeng,YE Xiaohui,WANG Xinyu

DOI: 10.19585/j.zjdl.202411010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享