大型陆上水风光综合基地交直流组网送出方案研究Research on an AC/DC networking and transmission scheme for large-scale onshore hydro-wind-solar integrated bases
徐政,徐文哲,张哲任,裘鹏,黄莹
XU Zheng,XU Wenzhe,ZHANG Zheren,QIU Peng,HUANG Ying
摘要(Abstract):
西南地区大规模陆上水风光综合基地颇具开发潜力,需确定合适方式将其送至东部负荷中心。针对风光新能源基地内部的升压汇集,鉴于传统的交流方案存在无功、距离受限等问题,开展了大型陆上风光综合基地的交直流组网送出方案研究。首先,从光伏风电并网多电压等级直流系统和水电孤岛送出系统两个方面介绍了水风光综合基地的交直流组网方案,并给出光伏风电并网多电压等级直流系统各级直流变压器方案。随后详细描述了直流电压控制策略和故障穿越控制策略。最后,基于PSCAD/EMTDC搭建15 000MW大型陆上水风光综合基地交直流组网送出系统仿真模型,验证了所提交直流组网方案的可行性。
The large-scale onshore hydro-wind-solar integrated bases in southwest China have great development potential, and it is necessary to determine a suitable scheme for power transmission to the eastern load center. In view of the boost collection inside the wind and solar energy base and problems of the traditional AC scheme such as reactive power and limited transmission distance, the paper studies the AC/DC networking and transmission scheme for large-scale onshore hydro-wind-solar integrated bases. First, it introduces the scheme from the aspects of the multivoltage level DC system with the integration of photovoltaic and wind power and island transmission system of hydropower, and schemes for DC transformers of all levels are introduced. Then, the DC voltage control strategy and fault ride-through control strategy are expounded. Finally, based on PSCAD/EMTDC, a simulation model of AC/DC networking and transmission system for a 15,000 MW large-scale onshore hydro-wind-solar integrated base transmission is built, and the feasibility of the proposed scheme is verified.
关键词(KeyWords):
水风光基地;交直流组网;直流变压器;控制保护策略
hydro-wind-solar integrated bases;AC/DC networking;DC transformer;control and protection strategy
基金项目(Foundation): 中央高校基本科研业务专项(2021QNA4014)
作者(Author):
徐政,徐文哲,张哲任,裘鹏,黄莹
XU Zheng,XU Wenzhe,ZHANG Zheren,QIU Peng,HUANG Ying
参考文献(References):
- [1]新华社.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[J].中国水利,2021(6):1-38.XINHUA News Agency.The outline of the 14th five-year plan(2021—2025)for national economic and social development and the long-range objectives through the year2035 of P. R. China[J].China Water Resources,2021(6):1-38.
- [2]文云峰,甄玉萌,陆艺丹,等.碳中和目标下水电高占比电网研究框架与发展形态[J].电力系统自动化,2023,47(4):1-9.WEN Yunfeng,ZHEN Yumeng,LU Yidan,et al. Research framework and evolution paradigm of power grid with high proportion of hydropower toward carbon neutrality target[J]. Automation of Electric Power Systems,2023,47(4):1-9.
- [3] KALAIR A,ABAS N,KHAN N.Comparative study of HVAC and HVDC transmission systems[J]. Renewable and Sustainable Energy Reviews,2016,59:1653-1675.
- [4]马进,赵大伟,钱敏慧,等.大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J].电网技术,2017,41(10):3112-3120.MA Jin,ZHAO Dawei,QIAN Minhui,et al.Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J].Power System Technology,2017,41(10):3112-3120.
- [5]金楚,李作红,葛景,等.交直流混联受端电网动态无功规划研究[J].电力电容器与无功补偿,2022,43(1):12-17.JIN Chu,LI Zuohong,GE Jing,et al.Research on dynamic reactive power planning of hybrid AC/DC receiving-end power grid[J].Power Capacitor&Reactive Power Compensation,2022,43(1):12-17.
- [6]田志浩,摆世彬,韩连山,等.基于MMC-UPFC的新型双环电压稳定控制策略[J].电力电容器与无功补偿,2021,42(3):105-111.TIAN Zhihao,BAI Shibin,HAN Lianshan,et al.A new double-loop voltage stability control strategy based on MMC-UPFC[J]. Power Capacitor&Reactive Power Compensation,2021,42(3):105-111.
- [7]金一丁,于钊,李明节,等.新一代调相机与电力电子无功补偿装置在特高压交直流电网中应用的比较[J].电网技术,2018,42(7):2095-2102.JIN Yiding,YU Zhao,LI Mingjie,et al. Comparison of new generation synchronous condenser and power electronic reactive-power compensation devices in application in UHV DC/AC grid[J]. Power System Technology,2018,42(7):2095-2102.
- [8]李梦柏.应用于新能源直流汇集与传输的直流—直流变压器拓扑研究[D].武汉:华中科技大学,2018.LI Mengbo.Research on DC/DC converters dedicated for DC collection of renewable energy and HVDC transmission system[D].Wuhan:Huazhong University of Science and Technology,2018.
- [9]郑眉,陈骞,宋远见,等.多电压等级直流电网的仿真技术与协调控制策略研究[J].浙江电力,2022,41(2):7-13.ZHENG Mei,CHEN Qian,SONG Yuanjian,et al. Research on simulation technology and coordinated control strategy of multivoltage DC grid[J]. Zhejiang Electric Power,2022,41(2):7-13.
- [10]余爽,姚铭艺,张祥,等.采用改进粒子群算法的含VSCHVDC交直流系统优化潮流[J].山东电力技术,2022,49(7):21-26.YU Shuang,YAO Mingyi,ZHANG Xiang,et al.Dynamic optimal power flow of AC/DC hybrid system containing VSC-HVDC based on improved PSO algorithm[J].Shandong Electric Power,2022,49(7):21-26.
- [11]程雪婷,徐宏锐,李业功.交直流混联电网中风电脱网风险评估方法[J].山西电力,2021(4):1-5.CHENG Xueting,XU Hongrui,LI Yegong. Risk assessment method for wind generator off-line in AC-DC hybrid power grid[J].Shanxi Electric Power,2021(4):1-5.
- [12]江道灼,谷泓杰,尹瑞,等.海上直流风电场研究现状及发展前景[J].电网技术,2015,39(9):2424-2431.JIANG Daozhuo,GU Hongjie,YIN Rui,et al. Research status and developing prospect of offshore wind farm with pure DC systems[J].Power System Technology,2015,39(9):2424-2431.
- [13]蔡旭,施刚,迟永宁,等.海上全直流型风电场的研究现状与未来发展[J].中国电机工程学报,2016,36(8):2036-2048.CAI Xu,SHI Gang,CHI Yongning,et al.Present status and future development of offshore all-DC wind farm[J].Proceedings of the CSEE,2016,36(8):2036-2048.
- [14]杨波,陈武,曹远志,等.一种适用于海上风电直流并网的谐振升压变换器[J].电力系统自动化,2015,39(4):129-134.YANG Bo,CHEN Wu,CAO Yuanzhi,et al. A step-up resonant converter for DC system of offshore wind farms[J].Automation of Electric Power Systems,2015,39(4):129-134.
- [15]王新颖,汤广福,贺之渊,等.远海风电场直流汇集用DC/DC变换器拓扑研究[J].中国电机工程学报,2017,37(3):837-848.WANG Xinying,TANG Guangfu,HE Zhiyuan,et al.Topology research of DC/DC converters for offshore wind farm DC collection systems[J].Proceedings of the CSEE,2017,37(3):837-848.
- [16]李彬彬,王宁,赵晓东,等.适用于全直流海上风电场的柔性换流高压大容量直流变压器[J].电力系统自动化,2022,46(22):129-141.LI Binbin,WANG Ning,ZHAO Xiaodong,et al. Highvoltage large-capacity DC transformer based on flexible commutation for full-DC offshore wind farm[J].Automation of Electric Power Systems,2022,46(22):129-141.
- [17]赵彪,安峰,屈鲁,等.多功能直流集电器概念及其全直流海上风电系统[J].中国电机工程学报,2021,41(18):6169-6181.ZHAO Biao,AN Feng,QU Lu,et al.Multi-function DCcollector concept and its all-DC offshore wind power system[J]. Proceedings of the CSEE,2021,41(18):6169-6181.
- [18]刘畅.全直流型海上风电场故障条件下的协调控制技术研究[D].济南:山东大学,2020.LIU Chang.Research on coordinated control of all-DC offshore wind farm under fault[D].Jinan:Shandong University,2020.
- [19]中国科学院.“大型光伏电站直流升压汇集接入关键技术及设备研制”项目通过验收[EB/OL].(2021-06-08)[2023-02-18]. https://www. cas. cn/syky/202106/t20210608_4792106.shtml.
- [20]安婷,乐波,杨鹏,等.直流电网直流电压等级确定方法[J].中国电机工程学报,2016,36(11):2871-2879.AN Ting,LE Bo,YANG Peng,et al. A determination method of DC voltage levels for DC grids[J].Proceedings of the CSEE,2016,36(11):2871-2879.
- [21]唐西胜.GB/T 35727—2017《中低压直流配电电压导则》解读[J].电力系统自动化,2020,44(1):23-28.TANG Xisheng. Interpretation of GB/T 35727—2017guideline for standard voltages of medium and low voltage DC distribution system[J].Automation of Electric Power Systems,2020,44(1):23-28.
- [22] CHEN W,RUAN X B,YAN H,et al.DC/DC conversion systems consisting of multiple converter modules:stability, control, and experimental verifications[J]. IEEE Transactions on Power Electronics,2009,24(6):1463-1474.
- [23]卢世蕾,孙凯,曹国恩,等.面向光伏直流升压系统的高压大功率LLC谐振变换器设计方法[J/OL].中国电机工程学报:1-14[2023-02-02]. https://doi. org/10.13334/j.0258-8013.pcsee.222575.LU Shilei,SUN Kai,CAO Guoeng,et al. A design method of high voltage and high power LLC resonant converter for photovoltaic DC voltage boosting system[J].Proceedings of the CSEE,2023:1-14[2023-02-02].https://doi.org/10.13334/j.0258-8013.pcsee.222575.
- [24]杨晓峰,郑琼林,林智钦,等.用于直流电网的大容量DC/DC变换器研究综述[J].电网技术,2016,40(3):670-677.YANG Xiaofeng,ZHENG Qionglin,LIN Zhiqin,et al.Survey of high-power DC/DC converter for HVDC grid application[J].Power System Technology,2016,40(3):670-677.
- [25]彭发喜,黄伟煌,李岩等.海上风电经双极柔直系统送出功率平衡控制策略[J/OL].南方电网技术:1-8[2023-02-01]. http://kns. cnki. net/kcms/detail/44.1643. tk. 20221130.1041.006.html.PENG Faxi,HUANG Weihuang,LI Yan,et al.Power balance control strategy of offshore wind farm interconnection via bi-polar MMC-HVDC system[J/OL]. Southern Power System Technology:1-8[2023-02-01].http://kns.cnki. net/kcms/detail/44.1643. tk. 20221130.1041.006.html.
- [26]屈鲁,余占清,陈政宇,等.三端口混合式直流断路器的工程应用[J].电力系统自动化,2019,43(23):141-146.QU Lu,YU Zhanqing,CHEN Zhengyu,et al.Engineering application of three-terminal hybrid DC circuit breaker[J].Automation of Electric Power Systems,2019,43(23):141-146.