大型调相机励磁与无功电压协调控制策略探讨Discussion on Coordinated Control Strategy for Large Synchronous Compensator and Reactive Power
吴跨宇,房乐,卢岑岑,沈轶君
WU Kuayu,FANG Le,LU Cencen,SHEN Yijun
摘要(Abstract):
特高压直流站装设的大型调相机本质上是一台挂网运行且不带机械负荷的同步电动机,其励磁控制与无功电压综合控制的目的是为换流站交流母线提供快速、大额的动态和暂态无功电压支撑。在此分析了大型调相机与常规发电机励磁主环和辅环控制方面的差异,提出了励磁系统调差和低励限制等的配置方法、参数整定原则。针对调相机定位于快速动态和暂态无功电压支撑而不承担换流站无功基荷的特点,提出了一种基于励磁AVR的调相机综合无功电压控制方法,既可以保证调相机在AVR模式下具有快速响应能力,又能保证其长期稳态运行在设定无功目标。此处提出的励磁控制策略和无功电压综合控制策略可供换流站大型调相机励磁系统设计参考。
Large synchronous compensator installed in UHVDC station essentially is a synchronous motor with no mechanical load. The purpose of its excitation control and reactive voltage integrated control is to provide fast, large amount of dynamic and transient reactive voltage support for AC busbar of converter station. In this paper, the difference of excitation main ring and auxiliary loop control between large synchronous compensator and conventional generator is analyzed, and the configuration method and parameter setting principle of excitation system adjustment difference and low excitation limit are put forward. In view of the fact that the synchronous compensator is located in the fast dynamic and transient reactive power and voltage support without bearing the reactive load of the converter station, a comprehensive reactive voltage control method based on excitation AVR is proposed in this paper. It can not only guarantee the fast response ability of the synchronous compensator in AVR mode, but also ensure the long-term steady-state operation in the setting of reactive power target. The proposed excitation control strategy and reactive voltage integrated control strategy can be used as a reference for the design of excitation system for large synchronous compensators in converter stations.
关键词(KeyWords):
直流换流站;调相机;励磁系统;无功电压控制;控制策略
HVDC converter station;synchronous compensator;excitation system;reactive voltage control;control strategy
基金项目(Foundation):
作者(Author):
吴跨宇,房乐,卢岑岑,沈轶君
WU Kuayu,FANG Le,LU Cencen,SHEN Yijun
DOI: 10.19585/j.zjdl.201802008
参考文献(References):
- [1]李兆伟,翟海保,刘福锁,等.多馈入交直流混联受端电网直流接入能力研究评述[J].电力系统保护与控制,2016,44(8):142-148.
- [2]覃琴,郭强,周勤勇,等.国网“十三五”规划电网面临的安全稳定问题及对策[J].中国电力,2015,48(1):25-32.
- [3]邵瑶,汤涌.多馈入直流系统交互作用因子的影响因素分析[J].电网技术,2013,37(3):794-799.
- [4]王晶,梁志峰,江木,等.多馈入直流同时换相失败案例分析及仿真计算[J].电力系统自动化,2015,39(4):141-146.
- [5]王海军,黄义隆,周全.高压直流输电换相失败响应策略与预测控制技术路线分析[J].电力系统保护与控制,2014,42(21):124-131.
- [6]夏成军,杨仲超,周保荣,等.考虑负荷模型的多回直流同时换相失败分析[J].电力系统保护与控制,2015,43(9):76-81.
- [7]LI HONGWEI,PENG GANRONG.Simulation study on anomalous commutation failure in multi-infeed HVDCsystems[C]//2nd International Conference on Advances in Energy and Environmental Science,2014.
- [8]王雅婷,张一驰,周勤勇,等.新一代大容量调相机在电网中的应用研究[J].电网技术,2017,41(1):22-28.
- [9]蔡晖,张文嘉,祁万春,等.调相机接入江苏电网后的适应性研究[J].电力电容器与无功补偿,2017,38(2):23-27.
- [10]郭一兵,凌在汛,崔一铂,等.特高压交直流系统动态无功支撑用大型调相机运行需求分析[J].湖北电力,2016,40(5):1-4.
- [11]SERCAN TELEKE,TARIK ABDULAHOVIC,TORBJRNTHIRINGER,et al.Performance comparison of synchronous condenser and SVC[J].IEEE Transactions on Power Delivery,2008,23(3):1606-1612.
- [12]沈洪流,钱翊.调相机厂用电的研究[J].浙江电力,2017,36(2):17-21.
- [13]PRABHA KUNDUR.电力系统稳定与控制[M].北京:中国电力出版社,2002.
- [14]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
- [15]程前,陈原名,孙闫,等.考虑限制功能的励磁系统仿真模型化研究[J].广东电力,2016,29(12):62-67.
- [16]王江峰,张晓力,陈元华.电厂发电机励磁系统的节能控制模型仿真分析[J].电网与清洁能源,2016,32(8):129-134.
- [17]韩兵,吴龙,吴跨宇,等.新型外挂式电力系统稳定器装置的设计与实现[J].电力工程技术,2017,36(6):144-150.