浙江电力

2025, v.44;No.350(06) 69-81

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于源-荷运行模式划分的微电网经济运行随机优化方法
A stochastic optimization method for economic microgrid operation based on "source-load operation" mode classification

周航,马立红,李中中,王海生,李思凡,张昌俊,符林贝
ZHOU Hang,MA Lihong,LI Zhongzhong,WANG Haisheng,LI Sifan,ZHANG Changjun,FU Linbei

摘要(Abstract):

可再生能源出力的波动性及用户侧用电行为的随机性导致源荷不确定性日益加剧,给微电网运行带来了较大的运行风险。为此,提出一种基于源-荷运行模式划分的微电网经济运行决策方法,以实现源荷不确定性下的微电网经济运行。首先,基于信息粒表征多变量时间序列,引入SWMD(空间加权矩阵距离)改进传统近邻传播聚类算法,采用多变量时间序列聚类算法量化各变量维度之间的相关性,实现微电网运行模式划分;其次,利用同种运行模式下的相似日数据构建待预测日的源-荷概率预测模型,通过场景生成和场景缩减获取典型源-荷预测场景;最后,采用自适应权重粒子群优化算法完成微电网随机优化模型的求解。算例结果表明,所提微电网经济运行方法能在有效处理源荷不确定性的基础上降低运行成本。
The volatility of renewable energy output and the randomness of user-side electricity consumption behavior have led to increasing source-load uncertainties, posing significant operational risks to microgrids. To address this issue, an economic operation decision-making method for microgrids based on source-load operation mode classification is proposed to achieve economic operation under uncertain conditions. First, a multivariate time series representation based on information granules is used, and the traditional affinity propagation(AP) is improved with spatial weighted matrix distance(SWMD). A multivariate time series clustering algorithm is applied to quantify correlations between variable dimensions, enabling the classification of microgrid operation modes. Second, a sourceload probabilistic forecasting model for the target day is established using similar-day data under the same operation mode, and typical source-load forecasting scenarios are obtained through scenario generation and reduction. Finally, the adaptive weighted particle swarm optimization(AW-PSO) is employed to solve the stochastic optimization model for microgrid operations. Case study results show that the proposed method effectively handles sourceload uncertainties while reducing operational costs.

关键词(KeyWords): 源荷不确定性;多变量时间序列聚类;自适应权重粒子群优化算法;微电网经济运行
source-load uncertainty;multivariate time series clustering;AW-PSO;economic microgrid operation

Abstract:

Keywords:

基金项目(Foundation): 国家重点研发计划(2021YFB1507100);; 中国南方电网有限责任公司科技项目(070000KK52210030)

作者(Author): 周航,马立红,李中中,王海生,李思凡,张昌俊,符林贝
ZHOU Hang,MA Lihong,LI Zhongzhong,WANG Haisheng,LI Sifan,ZHANG Changjun,FU Linbei

DOI: 10.19585/j.zjdl.202506007

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享