浙江电力

2023, v.42;No.329(09) 124-132

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进FPN与SVM的树障检测方法
A tree barrier detection algorithm based on the improved FPN and SVM

斯建东,汤义勤,赵文浩
SI Jiandong,TANG Yiqin,ZHAO Wenhao

摘要(Abstract):

针对目前无人机搭载传感器的树障检测方法无法实现自动检测的问题,提出一种基于改进的FPN(特征金字塔网络)与SVM(支持向量机)的树障检测算法。在传统的FPN基础上,进行自下而上的反向侧边连接并融合,采用ResNet 50(深度残差网络)和改进的FPN作为特征提取网络得到特征向量,并将其输入基于遗传算法的SVM中进行二分类,进而判断所检测图像中是否存在树障隐患。实验结果表明,本算法用于树障检测的准确率达到93.4%,处理图像的平均速度达到每秒11张,漏检率和误检率较低,具有较强的泛化能力。
The current tree barrier detection methods with UAV-mounted sensors cannot realize automatic detection.Therefore, this paper proposes a tree barrier detection algorithm based on improved FPN(feature pyramid network) and SVM(support vector machine). On this basis of traditional FPN, bottom-up reverse side connection and fusion is performed. ResNet 50, the deep residual networks, and the improved FPN are used as feature extraction networks to obtain the feature vectors, which are inputted into SVM based on genetic algorithm to perform binary classification and then determine whether there is a tree barrier hidden in the detected image. The experimental results show that the accuracy of this algorithm for tree barrier detection reaches 93.4%, and the average speed of processing images reaches 11 images per second, characterized by low missing detection rate and false detection rate as well as strong generalization ability.

关键词(KeyWords): 无人机;树障检测;特征金字塔;深度残差网络;支持向量机
UAV;tree barrier detection;FPN;deep residual networks;SVM

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ2000M7)

作者(Author): 斯建东,汤义勤,赵文浩
SI Jiandong,TANG Yiqin,ZHAO Wenhao

DOI: 10.19585/j.zjdl.202309015

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享