浙江电力

2026, v.45;No.357(01) 57-65

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于SAO-BiLSTM-KAN的电池健康状态估计
SOH estimation for lithium-ion batteries based on SAO-BiLSTM-KAN

张彬桥,邹霖,万刚
ZHANG Binqiao,ZOU Lin,WAN Gang

摘要(Abstract):

为提高锂离子电池SOH(健康状态)估计精度,提出一种基于SAO-BiLSTM-KAN(雪消融优化-双向长短期记忆神经网络-柯尔莫哥洛夫-阿诺德网络)的电池SOH估计方法。首先从电池充电过程中提取数据,并通过容量增量分析提取健康特征;然后将特征输入BiLSTM网络以捕捉时间序列中的长期依赖关系,进一步将BiLSTM输出传入KAN网络,以挖掘特征间的复杂非线性关系,从而提升估计性能。为达到更好的效果,引入SAO对模型超参数进行寻优。实验结果表明,所提模型在各类对比实验中均表现出优异性能,SOH估计的RMSE(均方根误差)与MAE(平均绝对误差)均低于0.919%,验证了该方法在预测精度和泛化能力方面的优势。
To improve the estimation accuracy of the state of health(SOH) for lithium-ion batteries, a novel estimation method based on snow ablation optimization, bidirectional long short-term memory network and KolmogorovArnold networks(SAO-BiLSTM-KAN) is proposed. Firstly, data is extracted from the battery charging process, and health features are derived through incremental capacity analysis. These features are then fed into a BiLSTM network to capture long-term dependencies within the time series. Subsequently, the outputs from the BiLSTM are passed to the KAN to explore complex nonlinear relationships among the features, thereby enhancing estimation performance. To achieve optimal results, the SAO algorithm is introduced to optimize the model's hyperparameters. Experimental results demonstrate that the proposed model delivers outstanding performance across various comparative tests, with both the root mean square error(RMSE) and mean absolute error(MAE) for SOH estimation remaining below 0.919%, validating the method's superior prediction accuracy and generalization capability.

关键词(KeyWords): 锂离子电池;健康状态;BiLSTM;KAN;雪消融优化算法
lithium-ion battery;SOH;BiLSTM;KAN;SAO

Abstract:

Keywords:

基金项目(Foundation): 湖北省自然科学基金(2022CFD167)

作者(Author): 张彬桥,邹霖,万刚
ZHANG Binqiao,ZOU Lin,WAN Gang

DOI: 10.19585/j.zjdl.202601006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享