基于改进自适应免疫遗传算法的智能电网虚假数据攻击检测方法A false data attack detection method for power grid based on an improved AIGA
王新宇,王相杰,张明月,程朋飞,王书征
WANG Xinyu,WANG Xiangjie,ZHANG Mingyue,CHENG Pengfei,WANG Shuzheng
摘要(Abstract):
作为典型的信息物理攻击,虚假数据可以实现测量输出无变化,从而欺骗基于卡方检测器的检测。为此,提出一种基于改进自适应免疫遗传算法的智能电网虚假数据攻击检测方法。首先,建立三相电压测量电网模型,分析虚假数据攻击的隐蔽特性。然后,利用抗体之间的相似度指数建立异常数据检测器,对入侵的虚假数据进行检测。此外,通过引入选择、交叉、变异算子的自适应设计,提高免疫遗传算法的收敛速度和全局寻优能力,从而改善攻击检测的性能指标。最后,通过仿真实验分析所提检测方法对虚假数据攻击的检测率和误检率,结果验证了该方法的有效性。
As a typical cyber-physical attack, false data are measured unchanged, thus deceiving the detection based on chi-square detector. To this end, a false data attack detection method for smart grid based on an improved adaptive immune genetic algorithm(AIGA) is proposed. First, a three-phase voltage measurement network model is established to analyze the hidden characteristics of the false data attack. Then, the similarity index between antibodies is utilized to establish an anomalous data detector to detect the intruding false data. In addition, the convergence speed and global optimization ability of the algorithm are improved by introducing the adaptive design of selection operators, crossover operators, and mutation operators, which improves the performance index of the attack detection. Finally, the detection rate and false detection rate of the proposed method for false data attack detection are analyzed through simulation experiments, and the results verify the effectiveness of the method.
关键词(KeyWords):
智能电网;虚假数据攻击;改进自适应免疫遗传算法
smart grid;false data attack;improved AIGA
基金项目(Foundation): 国家自然科学基金青年项目(62103357);; 河北省自然科学基金青年项目(F2021203043);; 河北省教育厅自然科学基金青年项目(QN2021139);; 江苏省配电网智能技术与装备协同创新中心开放基金项目(XTCX202203)
作者(Author):
王新宇,王相杰,张明月,程朋飞,王书征
WANG Xinyu,WANG Xiangjie,ZHANG Mingyue,CHENG Pengfei,WANG Shuzheng
DOI: 10.19585/j.zjdl.202310010
参考文献(References):
- [1]杨杉,谭博,郭静波.基于双马尔科夫链的新型能源互联网虚假数据注入攻击检测[J].电力自动化设备,2021,41(2):131-137.YANG Shan,TAN Bo,GUO Jingbo. Detection of false data injection attack for new-type energy Internet based on double Markov chains[J]. Electric Power Automation Equipment,2021,41(2):131-137.
- [2]刘广一,王继业,李洋,等.“电网一张图”时空信息管理系统[J].电力信息与通信技术,2020,18(1):7-17.LIU Guangyi,WANG Jiye,LI Yang,et al. Spatiotemporal information management system of “one map of power grid”[J].Electric Power Information and Communication Technology,2020,18(1):7-17.
- [3]王琦,邰伟,汤奕,等.面向电力信息物理系统的虚假数据注入攻击研究综述[J].自动化学报,2019,45(1):72-83.WANG Qi,TAI Wei,TANG Yi,et al.A review on false data injection attack toward cyber-physical power system[J].Acta Automatica Sinica,2019,45(1):72-83.
- [4]陈震宇,关志涛.基于ARIMA模型的智能电网虚假数据注入攻击检测[J].电力信息与通信技术,2021,19(11):24-29.CHEN Zhenyu,GUAN Zhitao. ARIMA model-based false data injection attack detection in smart grid[J].Electric Power Information and Communication Technology,2021,19(11):24-29.
- [5] YANG F S,LIANG X H,GUAN X H.Resilient distributed economic dispatch of a cyber-power system under DoS attack[J]. Frontiers of Information Technology&Electronic Engineering,2021,22(1):40-50.
- [6] LIU Y,NING P,REITER M K.False data injection attacks against state estimation in electric power grids[J].ACM Transactions on Information and System Security,2011,14(1):1-34.
- [7]王琦,李梦雅,汤奕,等.电力信息物理系统网络攻击与防御研究综述(一)建模与评估[J].电力系统自动化,2019,43(9):9-21.WANG Qi,LI Mengya,TANG Yi,et al.A review on research of cyber-attacks and defense in cyber physical power systems part one modelling and evaluation[J].Automation of Electric Power Systems,2019,43(9):9-21.
- [8]魏利胜,张倩.基于改进的UKF智能电网虚假数据攻击检测[J].系统仿真学报,2023,35(7):1508-1516.WEI Lisheng,ZHANG Qian.Detection of false data injection attack in smart grid based on improved UKF[J].Journal of System Simulation,2023,35(7):1508-1516.
- [9]何耀,周聪,郑凌月,等.基于扩展卡尔曼滤波的虚假数据攻击检测方法[J].中国电力,2017,50(10):35-40.HE Yao,ZHOU Cong,ZHENG Lingyue,et al.Detection method against false data injection attack based on extended Kalman filter[J]. Electric Power,2017,50(10):35-40.
- [10]罗小元,潘雪扬,王新宇,等.基于自适应Kalman滤波的智能电网假数据注入攻击检测[J].自动化学报,2022,48(12):2960-2971.LUO Xiaoyuan,PAN Xueyang,WANG Xinyu,et al.Detection of false data injection attacks in smart grid based on adaptive Kalman filter[J].Acta Automatica Sinica,2022,48(12):2960-2971.
- [11]史晗璋,谢林柏,吴治海,等.基于编码策略的电网假数据注入攻击检测[J].信息与控制,2021,50(4):419-426.SHI Hanzhang,XIE Linbo,WU Zhihai,et al.Detection of false data injection attacks in power grid based on coding schemes[J]. Information and Control,2021,50(4):419-426.
- [12]夏云舒,王勇,周林,等.基于改进生成对抗网络的虚假数据注入攻击检测方法[J].电力建设,2022,43(3):58-65.XIA Yunshu,WANG Yong,ZHOU Lin,et al.False data injection attack detection method based on improved generative adversarial network[J]. Electric Power Construction,2022,43(3):58-65.
- [13]伍媛媛,曾爱国.基于人工免疫分类器的入侵检测方法[J].智能计算机与应用,2013,3(1):75-78.WU Yuanyuan,ZENG Aiguo. Intrusion detection based on artificial immune classifier[J].Intelligent Computer and Applications,2013,3(1):75-78.
- [14] MANANDHAR K,CAO X J,HU F,et al.Detection of faults and attacks including false data injection attack in smart grid using Kalman filter[J].IEEE Transactions on Control of Network Systems,2014,1(4):370-379.
- [15] CHEN J C,LIANG G Q,CAI Z X,et al.Impact analysis of false data injection attacks on power system static security assessment[J].Journal of Modern Power Systems and Clean Energy,2016,4(3):496-505.
- [16]温正,孙华克.MATLAB智能算法[M].北京:清华大学出版社,2017.
- [17] WANG S Y,BI S Z,ZHANG Y J A.Locational detection of the false data injection attack in a smart grid:a multilabel classification approach[J]. IEEE Internet of Things Journal,2020,7(9):8218-8227.
- [18]张韬,丁永生,郝矿荣,等.基于人工免疫系统的故障诊断方法及其应用[J].系统仿真学报,2014,26(4):830-835.ZHANG Tao,DING Yongsheng,HAO Kuangrong,et al.Artificial immune system based fault detection approach with application to carbon fiber stretching process[J].Journal of System Simulation,2014,26(4):830-835.
- [19] AYDIN I,KARAKOSE M,AKIN E.An adaptive artificial immune system for fault classification[J].Journal of Intelligent Manufacturing,2012,23(5):1489-1499.
- [20]邓高峰,赵震宇,王珺,等.基于改进自编码器和随机森林的窃电检测方法[J].中国测试,2020,46(7):83-89.DENG Gaofeng,ZHAO Zhenyu,WANG Jun,et al.Detection method for electricity theft based on improved autoencoder and random forest[J].China Measurement&Test,2020,46(7):83-89.