基于改进模糊自适应控制的风电机组逐步惯性最优控制策略An optimal stepwise inertial control strategy for wind turbines based on improved fuzzy adaptive control
周涛,姚嘉辰,倪俊,徐超,徐妍
ZHOU Tao,YAO Jiachen,NI Jun,XU Chao,XU Yan
摘要(Abstract):
传统SIC(逐步惯性控制)与电网频率解耦,限制了风电机组对系统频率的实时感知能力,可能引发严重的SFD(频率二次跌落)问题。为此,提出一种基于改进模糊自适应控制的风电机组逐步惯性最优控制策略。首先,通过模糊自适应控制建立了频率状态量、转速变化量与控制策略之间的联系,使风电机组能够根据系统频率波动和自身转速状态动态调整输出功率。接着,引入了PSO(粒子群优化)算法对模糊自适应控制的关键参数进行优化,以提升控制性能。进一步,利用DNN(深度神经网络)的数据处理与在线决策能力,实现对关键参数的特征提取和学习。仿真结果表明,所提策略能够有效避免SFD,平滑风电机组的状态切换轨迹,实现最优频率轨迹,在不同场景下均表现出良好的适应性。
Conventional stepwise inertial control(SIC) is decoupled from grid frequency, which limits the real-time frequency perception of wind turbines and may lead to severe secondary frequency drop(SFD). To address this issue, this paper proposes an optimal stepwise inertial control strategy for wind turbines based on improved fuzzy adaptive control. First, fuzzy adaptive control is used to establish the relationship between frequency states, rotor speed variations, and control strategies, enabling wind turbines to dynamically adjust output power according to system frequency fluctuations and their rotor speed conditions. Then, particle swarm optimization(PSO) is applied to optimize key parameters of the fuzzy adaptive control, thereby enhancing control performance. Furthermore, a deep neural network(DNN) is leveraged for feature extraction and learning of key parameters, taking advantage of its data processing and online decision-making capabilities. Simulation results demonstrate that the proposed strategy effectively prevents SFD, smooths the state transition of wind turbines, and achieves the optimal frequency trajectory, showing good adaptability under different scenarios.
关键词(KeyWords):
新型电力系统;逐步惯性控制;频率二次跌落;模糊自适应控制;深度神经网络;最优频率轨迹
modern power system;SIC;SFD;fuzzy adaptive control;DNN;optimal frequency trajectory
基金项目(Foundation): 江苏省自然科学基金青年项目(BK20241481);; 中央高校基本科研业务费专项资金(30922010709)
作者(Author):
周涛,姚嘉辰,倪俊,徐超,徐妍
ZHOU Tao,YAO Jiachen,NI Jun,XU Chao,XU Yan
DOI: 10.19585/j.zjdl.202511004
参考文献(References):
- [1]陈国平,李明节,许涛,等.关于新能源发展的技术瓶颈研究[J].中国电机工程学报,2017,37(1):20-27.CHEN Guoping,LI Mingjie,XU Tao,et al.Study on technical bottleneck of new energy development[J].Proceedings of the CSEE,2017,37(1):20-27.
- [2]周文俊,李泽,丁波,等.新能源高占比电力系统并行恢复分区划分[J].浙江电力,2024,43(11):74-89.ZHOU Wenjun,LI Ze,DING Bo,et al. Partitioning of high-penetration renewable energy power systems for parallel restoration[J]. Zhejiang Electric Power,2024,43(11):74-89.
- [3]盛四清,俞可,张文朝,等.大规模风电并网对送端系统功角稳定的影响研究[J].电力系统保护与控制,2022,50(6):82-90.SHENG Siqing,YU Ke,ZHANG Wenchao,et al. Influence of large-scale wind power grid connection on the power angle stability of the sending end system[J].Power System Protection and Control,2022,50(6):82-90.
- [4]任凯奇,张东英,黄越辉,等.基于新能源出力比例的大规模系统惯量估计[J].电网技术,2022,46(4):1307-1315.REN Kaiqi,ZHANG Dongying,HUANG Yuehui,et al.Large-scale system inertia estimation based on new energy output ratio[J].Power System Technology,2022,46(4):1307-1315.
- [5]张剑云,李明节.新能源高渗透的电力系统频率特性分析[J].中国电机工程学报,2020,40(11):3498-3507.ZHANG Jianyun,LI Mingjie. Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE,2020,40(11):3498-3507.
- [6]吴琛,刘威,张丹,等.基于宽频振荡稳定约束的风电接入容量分析[J].电力建设,2023,44(2):83-91.WU Chen,LIU Wei,ZHANG Dan,et al.Wind power penetration capacity analysis based on wide-band oscillation constraint[J].Electric Power Construction,2023,44(2):83-91.
- [7]路宽,曲建璋,高嵩,等.基于变分推断的超短期风电功率预测[J].山东电力技术,2023,50(4):13-21.LU Kuan,QU Jianzhang,GAO Song,et al. Ultra-shortterm wind power prediction based on variational inference[J].Shandong Electric Power,2023,50(4):13-21.
- [8]张晓英,段赛赛,张兴平,等.融合时空相关性和权重系数分配的风电机组出力异常值处理方法[J].电力建设,2024,45(6):100-110.ZHANG Xiaoying,DUAN Saisai,ZHANG Xingping,et al.Outlier processing method for wind turbine output integrated with spatiotemporal correlation and weight coefficient distribution[J].Electric Power Construction,2024,45(6):100-110.
- [9]张亚丽,王聪,张宏立,等.基于非平稳Transformer的超短期风电功率多步预测[J].智慧电力,2024,52(1):108-115.ZHANG Yali,WANG Cong,ZHANG Hongli,et al.Multi-step Prediction of Ultra-short-term Wind Power Based on Non-stationary Transformer[J]. Smart Power,2024,52(1):108-115.
- [10]陈龙翔,曹际储,于思奇,等.风机惯量支撑对电网频率跌落特性的影响[J].浙江电力,2023,42(4):27-35.CHEN Longxiang,CAO Jichu,YU Siqi,et al.Influence of wind turbine inertia support on frequency drop characteristics of power grid[J]. Zhejiang Electric Power,2023,42(4):27-35.
- [11]俞靖一,葛俊,杨铎烔,等.基于转子动能的风电场自适应频率主动支撑控制策略[J].电力工程技术,2024,43(5):131-139.YU Jingyi,GE Jun,YANG Duotong,et al.Adaptive frequency support control strategy for wind farms based on rotor kinetic energy[J].Electric Power Engineering Technology,2024,43(5):131-139.
- [12]张蕊,李晓明,高泽明,等.考虑风速差异的风电场调频备用协调控制策略[J].电力建设,2023,44(2):101-109.ZHANG Rui,LI Xiaoming,GAO Zeming,et al. Coordinated control of frequency-regulation reserve capacity for wind farm considering wind speed difference[J]. Electric Power Construction,2023,44(2):101-109.
- [13]邢法财,马琳琳,陈蕊,等.基于负电阻效应的风电场宽频振荡风险评估方法[J].山东电力技术,2023,50(10):9-17.XING Facai,MA Linlin,CHEN Rui,et al. Risk assessment method for wide-band oscillation of wind farms based on the negative resistance effect[J].Shandong Electric Power,2023,50(10):9-17.
- [14]阮睿,朱清,郭登辉,等.基于迁移学习的风电并网系统次/超同步振荡紧急切机策略[J].智慧电力,2024,52(11):23-31.RUAN Rui,ZHU Qing,GUO Denghui,et al.Emergency tripping strategy for sub/supersynchronous oscillation in wind power integrated system based on transfer learning[J].Smart Power,2024,52(11):23-31.
- [15]许鸣吉,沈磊,李胜,等.接入光伏、风电的上海中原地区配电网重构研究[J].电测与仪表,2023,60(5):140-146.Xu Mingji,Shen Lei,Li Sheng,et al.Research of distribution network reconfiguration with the access of photovoltaic and wind power in Zhongyuan area of Shanghai[J].Electrical Measurement&Instrumentation,2023,60(5):140-146.
- [16]乔左江,杜欣慧,薛晴.大规模风电参与系统调频研究综述[J].电测与仪表,2023,60(7):1-12.QiaoZuojiang,Du Xinhui,Xue Qing.Review of large-scale wind power participating in system frequency regulation[J].Electrical Measurement&Instrumentation,2023,60(7):1-12.
- [17]周涛,向永建,杜可可,等.风机与储能参与电网调频协调控制技术综述[J].浙江电力,2024,43(7):45-55.ZHOU Tao,XIANG Yongjian,DU Keke,et al.An overview of a coordinated control technique for wind turbines and energy storage participating grid frequency regulation[J].Zhejiang Electric Power,2024,43(7):45-55.
- [18]奥博宇,王方政,陈磊,等.风电机组变桨减载一次调频模型及聚合方法[J].电网技术,2023,47(4):1360-1369.AO Boyu,WANG Fangzheng,CHEN Lei,et al.Primary frequency regulation model and aggregation of deloading wind turbine generators with pitch angle adjustment[J].Power System Technology,2023,47(4):1360-1369.
- [19]汝冬,蔺红.改善惯性响应与一次调频的风电全直流系统协调控制策略[J].电力工程技术,2024,43(3):52-62.RU Dong,LIN Hong.Coordinated control strategy for improving inertial response and primary frequency modulation in wind power full DC system[J].Electric Power Engineering Technology,2024,43(3):52-62.
- [20]李世春,宋秋爽,薛臻瑶,等.含风电虚拟惯性响应的新能源电力系统惯量估计[J].电力工程技术,2023,42(2):84-93.LI Shichun,SONG Qiushuang,XUE Zhenyao,et al.Inertia estimation of new energy power system with virtual inertia response of wind power[J].Electric Power Engineering Technology,2023,42(2):84-93.
- [21] GUO L,REN Y F,WANG Z G,et al.Double-layer feedback control method for synchronized frequency regulation of PMSG-based wind farm[J].IEEE Transactions on Sustainable Energy,2021,12(4):2423-2435.
- [22]刘钊汛,秦亮,杨诗琦,等.面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J].电网技术,2023,47(1):1-16.LIU Zhaoxun,QIN Liang,YANG Shiqi,et al.Review on virtual synchronous generator control technology of power electronic converter in power system based on new energy[J].Power System Technology,2023,47(1):1-16.
- [23] KANG M,KIM K,MULJADI E,et al.Frequency control support of a doubly-fed induction generator based on the torque limit[J]. IEEE Transactions on Power Systems,2016,31(6):4575-4583.
- [24]张鹏,杨苹,唐玉烽,等.风电机组自适应步进惯量控制策略[J].电网技术,2024,48(8):3401-3408.ZHANG Peng,YANG Ping,TANG Yufeng,et al.Adaptive stepwise inertial control strategy for wind turbines[J].Power System Technology,2024,48(8):3401-3408.
- [25] ZHANG Y B,HAO Z G,YANG S H,et al.A systemview optimal additional active power control of wind turbines for grid frequency support[J].IEEE Transactions on Power Systems,2024,39(2):4323-4335.
- [26]李阳,李群,陈载宇,等.面向电网最大频率偏差的风电机组短时频率支撑最优策略与机理[J].中国电机工程学报,2024,44(3):1020-1035.LI Yang,LI Qun,CHEN Zaiyu,et al.Maximum-frequencydeviation-oriented optimal short-term frequency support strategy of wind turbines and the mechanism[J].Proceedings of the CSEE,2024,44(3):1020-1035.
- [27] HAFIZ F,ABDENNOUR A.Optimal use of kinetic energy for the inertial support from variable speed wind turbines[J].Renewable Energy,2015,80:629-643.
- [28] TANG F,XIAO G C,LIU D C,et al.Frequency support of DFIG by using improved inertial control[C]//2018IEEE Power&Energy Society General Meeting(PESGM).August 5-10,2018,Portland,OR,USA.IEEE,2018:1-5.
- [29] YANG D J,KIM J,KANG Y C,et al. Temporary frequency support of a DFIG for high wind power penetration[J].IEEE Transactions on Power Systems,2018,33(3):3428-3437.
- [30]王亚伦,周涛,陈中,等.基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制[J].上海交通大学学报,2023,57(11):1477-1491.WANG Yalun,ZHOU Tao,CHEN Zhong,et al.Stepwise inertial intelligent control of wind power for frequency regulation based on stacked denoising autoencoder and deep neural network[J]. Journal of Shanghai Jiao Tong University,2023,57(11):1477-1491
- [31]徐振淋.基于优化功率曲线的风电机组改进SIC调频控制方法[D].南京:南京理工大学,2021.XU Zhenlin.Improved step inertia control frequency regulation method for wind turbine based on optimized power curve[D]. Nanjing:Nanjing University of Science and Technology,2021.
- [32]孙铭,徐飞,陈磊,等.利用转子动能的风机辅助频率控制最优策略[J].中国电机工程学报,2021,41(2):506-514.SUN Ming,XU Fei,CHEN Lei,et al.Optimal auxiliary frequency control strategy of wind turbine generator utilizing rotor kinetic energy[J]. Proceedings of the CSEE,2021,41(2):506-514.
- [33]张宇博,杨松浩,郝治国.最大化电力系统频率最低点的并网风电机组频率支撑控制[J].电力系统自动化,2024,48(8):141-151.ZHANG Yubo,YANG Songhao,HAO Zhiguo. Frequency support control of grid-connected wind turbines to maximize frequency nadir of power systems[J].Automation of Electric Power Systems,2024,48(8):141-151.
- [34] MENDES J,MAIA R,ARAúJO R,et al. Self-evolving fuzzy controller composed of univariate fuzzy control rules[J].Applied Sciences,2020,10(17):5836.
- [35] LI L,LIANG Y C,LI T T,et al.Boost particle swarm optimization with fitness estimation[J].Natural Computing,2019,18(2):229-247.
- [36] BAO W Y,DING L,LIU Z F,et al.Analytically derived fixed termination time for stepwise inertial control of wind turbines:Part I:Analytical derivation[J]. International Journal of Electrical Power&Energy Systems,2020,121:106120.
- [37] GUO Y C,BAO W Y,DING L,et al. Analytically derived fixed termination time for stepwise inertial control of wind turbines:Part II:Application strategy[J]. International Journal of Electrical Power&Energy Systems,2020,121:106106.