浙江电力

2023, v.42;No.322(02) 67-75

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于CatBoost算法的短期光伏功率预测方法
Research on a short-term photovoltaic power prediction method based on CatBoost

陈海宏,易永利,黄珅,韩静怡
CHEN Haihong,YI Yongli,HUANG Shen,HAN Jingyi

摘要(Abstract):

光伏电站发电功率的间歇性与波动性对电网安全、稳定、经济运行的影响日益明显,因此需要不断提高光伏发电功率预测准确率,为电网灵活调度与规划提供准确信息。首先,介绍了短期光伏发电功率的预测算法、特征方程、预测流程以及评价指标。接着,通过SHAP方法对训练集所构造特征进行分析筛选,使用CatBoost算法进行训练。最后,通过与使用相同特征的其他机器学习算法模型预测精度的对比,表明所提方法有效提高了预测性能,证实了基于CatBoost算法、融合多维特征的模型在光伏功率预测中的优势。
The intermittent and fluctuating generation power of PV power plants has an increasingly prominent impact on the safe, stable, and economical operation of power grids. Therefore, it is required to continuously improve the accuracy of PV power prediction to provide accurate information for flexible grid dispatching and planning.First, the prediction algorithm, characteristic equation, prediction process, and evaluation index of short-term PV generation power are introduced. Afterward, the features constructed in the training set are analyzed and filtered using the SHAP, and the training is performed using the CatBoost. Finally, by comparing the prediction accuracy with other machine learning algorithm models using the same features, the paper indicates that the proposed method can improve the prediction performance and confirms the advantages of the CatBoost that incorporates multidimensional feature models in PV power prediction.

关键词(KeyWords): 光伏发电;功率预测;CatBoost;SHAP
PV power generation;power prediction;CatBoost;SHAP

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(B311WZ220002)

作者(Author): 陈海宏,易永利,黄珅,韩静怡
CHEN Haihong,YI Yongli,HUANG Shen,HAN Jingyi

DOI: 10.19585/j.zjdl.202302009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享