浙江电力

2019, v.38;No.275(03) 87-91

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

电力现货市场的售电公司短期负荷预测
Short-term Load Forecasting Based on Power Spot Market for Power Sales Corporation

唐猛,董晓琦,蒋睿辰
TANG Meng,DONG Xiaoqi,JIANG Ruichen

摘要(Abstract):

针对国内售电公司即将参与电力现货市场,需要对客户日负荷曲线进行预测的实际需求,提出了一种基于相似日的狼群-支持向量机短期负荷预测方法。该方法在相似日选取时引入近期同类型日的日平均负荷相关系数,充分考虑了负荷的延续性,同时采用模糊聚类方法来识别不同影响因素对不同负荷的影响程度;将近期同类型日的日均负荷加入到预测模型的输入变量中,并采用改进的人工狼群算法来对支持向量机法的预测模型参数进行优化,从而提高预测模型的精确度。实例验证结果表明:该算法准确度更高,能够为售电公司面对即将到来的电力现货市场提供技术支持。
Domestic power sales corporations will participate in power spot market and need to forecast customer's daily load curve. The paper proposes a short-term load forecasting method of artificial wolf pack algorithm-support vector machine(WPA-SVM) based on a similar day. This paper first introduces the recent daily average load correlation coefficient on selection of the similar day, fully considering the continuity of the load, then uses fuzzy clustering method to identify the influence degree of the different factors on different load curves. Moreover, the recent daily average load is added to the input variables of forecasting model, and the WPA-SVM algorithm is used to optimize the forecasting model parameter to improve the precision. As is shown in the example that the algorithm is more accurate and can provide technical support to power sales corporation in the face of the upcoming power spot market.

关键词(KeyWords): 电力现货市场;售电公司;超短期负荷预测;相似日;WPA;SVM
power spot market;power sales corporation;super short-term load forecasting;similar day;WPA;SVM

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 唐猛,董晓琦,蒋睿辰
TANG Meng,DONG Xiaoqi,JIANG Ruichen

DOI: 10.19585/j.zjdl.201903016

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享