浙江电力

2020, v.39;No.293(09) 60-65

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于PSO优化与深度信念网络的机炉协调系统建模研究
Research on Boiler-Turbine Coordinated Control System Modeling Based on PSO Optimization and Deep Belief Network

吴林峰,孟瑜炜,俞荣栋,张震伟,徐仙华,王豆,郭鼎
WU Linfeng,MENG Yuwei,YU Rongdong,ZHANG Zhengwei,XU Xianhua,WANG Dou,GUO Ding

摘要(Abstract):

火电厂机炉协调控制系统的控制对象是一个多变量的复杂模型,具有非线性、强耦合、惯性大的特点。针对传统的建模方法缺乏灵活性的缺点,提出一种基于粒子群优化DBN(深度信念网络)的机炉协调系统数据驱动建模方法,以时序数据为基础,采用DBN的无监督贪婪逐层训练算法确定各层网络的权值,引入粒子群优化算法对DBN网络层的神经元数量进行寻优,提高模型精度,最后,结合BP网络在顶层设计联想记忆层实现预测回归分析功能。以660 MW燃煤机组协调系统为试验对象,结果表明,该方法建立的模型具有良好的非线性拟合能力,预测精度高。
The control object of the boiler-turbine coordinated control system in a power plant is a multivariable complex model, which is characterized by nonlinearity, strong coupling and large inertia. Given the poor flexibility of traditional modeling methods, the paper presents a data-driven modeling method for a boiler-turbine coordinated control system based on PSO(particle swarm optimization)-DBN(deep belief network).Based on the time series data, the network weights in each layer are determined by the unsupervised greedy layer by layer training algorithm of DBN, and the number of neurons in the DBN network layer is optimized through PSP to improve the model precision. Finally, the predictive regression analysis function is realized by designing the associative memory layer at the top level based on the BP network. A test on the coordinated control system of a 660 MW coal-fired power generating unit shows that the model established by this method has good nonlinear fitting ability and high prediction accuracy.

关键词(KeyWords): 深度信念网络;粒子群优化;数据驱动建模;机炉协调系统
deep belief network;particle swarm optimization;data-driven modeling;boiler-turbine coordinated control system

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 吴林峰,孟瑜炜,俞荣栋,张震伟,徐仙华,王豆,郭鼎
WU Linfeng,MENG Yuwei,YU Rongdong,ZHANG Zhengwei,XU Xianhua,WANG Dou,GUO Ding

DOI: 10.19585/j.zjdl.202009010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享