输电铁塔石墨烯重防腐涂料的涂装性能评估Performance Evaluation of the Graphene Based Heavy Anticorrosive Coating for Power Transmission Tower
李延伟,周自强,王彬栩,胡家元,周开河,李丰伟,钱洲亥,杨跃平
LI Yanwei,ZHOU Ziqiang,WANG Binxu,HU Jiayuan,ZHOU Kaihe,LI Fengwei,QIAN Zhouhai,YANG Yueping
摘要(Abstract):
500 kV输变电联网工程380 m输电高塔位于舟山沿海,滨海高盐、高湿及强风环境对铁塔防腐提出了苛刻要求,采用石墨烯重防腐涂料进行全塔涂装防腐。为监督石墨烯涂料的实际涂装效果,采用目视检查、厚度及附着力测试等方法现场多批次抽检涂料的涂装性能,首次获得石墨烯涂料现场涂装性能关键数据;取样检测了石墨烯微粒分散性,分析其防腐机理。结果表明:管壁涂层平整光滑、无针孔;涂层厚度处于220~397μm;涂层附着力为0~1级(划格法), 11.9~18.1 MPa(拉拔法);上述关键指标值满足设计要求。石墨烯中间漆的微观结构表明石墨烯微粒在涂料中均匀分散,有望搭接形成电子导流通道来提高锌粉利用率,并可实现对侵蚀介质的物理隔绝。石墨烯重防腐涂料的现场涂装性能合格,有望发挥出良好的防腐效果。
380 m power transmission tower for 500 k V power transmission and transformation project is located in Zhoushan coastal area. The strict anticorrosion measure is needed for the power tower due to the coastal environment of high salinity, high humidity and strong wind, so the graphene based heavy anticorrosive coating is used in the tower. The performance evaluation of the graphene based heavy anticorrosive coating was performed by visual inspection, thickness and adhesion tests as well as the composition analysis of coating to obtain key data of field coating performance in coating site for the first time; dispersity of the sampled graphene particles is detected and the anticorrosion mechanism is analyzed. The result indicates that the coating was smooth without pinhole; the coating thickness was between 220 and 397 μm, the adhesion of coating was level 0~1(row lattice method) and 11.9~18.1 MPa(drawing method) respectively. The above key index meets the design requirement. The microstructure of graphene intermediate shows that the grapheme disperses evenly in the coating, and it can form the electron transfer channel to better zinc powder utilization and physically isolate corrosion media. It is shown that the performance of the graphene based coating is up to the standard and has good anticorrosion effect.
关键词(KeyWords):
输电铁塔;石墨烯;重防腐涂料;涂装效果;评估
transmission tower;graphene;heavy anticorrosive coating;coating effect;evaluation
基金项目(Foundation): 国家电网有限公司总部科技项目(5211DS17001V);; 国网浙江省电力有限公司科技项目(5211DS16001N)
作者(Author):
李延伟,周自强,王彬栩,胡家元,周开河,李丰伟,钱洲亥,杨跃平
LI Yanwei,ZHOU Ziqiang,WANG Binxu,HU Jiayuan,ZHOU Kaihe,LI Fengwei,QIAN Zhouhai,YANG Yueping
DOI: 10.19585/j.zjdl.201811016
参考文献(References):
- [1]Corrosion of metals and alloys-Corrosivity of atmospheres-Classification,determination and estimation:ISO 9223-2012[S].Switzerland.ISO copyright office,2012.
- [2]输电线路铁塔防腐蚀保护涂装:DL/T 1453-2015[S].北京:中国电力出版社,2016.
- [3]张双红,杨波,孔纲,等.石墨烯防腐蚀涂料在海洋工程中的应用研究[J].材料保护,2017,50(10):65-69.
- [4]程红红,刘栓,王娟,等.石墨烯防腐涂层对油罐沉积水的防腐机制研究[J].表面技术,2017,46(11):83-89.
- [5]刘栓,周开河,方云辉,等.墨烯重防腐涂层在国网输电铁塔防护的应用研究[J].中国材料进展,2017,36(6):442-447.
- [6]黄坤,曾宪光,裴崇峰,等.石墨烯/环氧复合导电涂层的防腐性能研究[J].涂料工业,2015,45(1):17-20.
- [7]CHANG K C,HSU M H,LU H I,et al.Room-temperature cured hydrophobic epoxy/grapheme composites as corrosion inhibitor for cold-rolled steel[J].Carbon,2014(66):144-153.
- [8]刘栓,王春婷,程庆利,等.石墨烯基涂料防护性能的研究进展[J].中国材料进展,2017,36(5):377-383.
- [9]何毅帆,周慎学,金士政,等.特大型海水冷却塔防腐涂层性能检测及老化控制策略探讨[J].浙江电力,2017,36(8):69-72.
- [10]色漆和清漆漆膜的划格试验:GB/T 9286-1998[S].北京:中国质检出版社,1998.
- [11]色漆和清漆拉开法附着力试验:GB/T 5210-2006[S].北京:中国标准出版社,2006.
- [12]关迎东,候晓燕,孙春龙.石墨烯-锌粉长效防腐涂料的研制[J].电镀与涂饰,2017,36(14):725-730.
- [13]KRISHNAN M A,ANEJA K S,SHAIKH A,et al.Graphene-based anticorrosive coating for copper[J].Rsc Advances,2017,8(1):499-507.
- [14]赵新新,李凯,李伟铭,等.石墨烯改性防腐涂料的防腐机理研究[J].中国涂料,2017,32(2):18-23.