CT26型断路器操动机构动力学仿真及拐臂疲劳寿命分析Mechanical Simulation on Operating Mechanism and Fatigue Life Analysis on Crank Arm of CT26 Circuit Breaker
王增彬,张拓,姚聪伟,孙帅,王立军
WANG Zengbin,ZHANG Tuo,YAO Congwei,SUN Shuai,WANG Lijun
摘要(Abstract):
机构缺陷是高压断路器运维过程中的常见问题之一,开展断路器操动机构机械特性研究对提高其运行可靠性有着重要意义。针对高压断路器CT26-252型弹簧操动机构分别建立多刚体动力学模型和刚柔混合动力学模型,对断路器操动机构在分合闸过程中的运动情况进行仿真研究,对比了2种模型的差异,并用实验数据验证了模型的准确性,最后计算得出机构拐臂的机械应力和应变分布,进行了疲劳寿命分析。结果表明:针对CT26-252型弹簧操动机构建立的动力学模型可以较准确地模拟断路器操动机构的实际运动情况,并且由于机构零件应变量小,多刚体动力学模型与刚柔混合动力学模型计算结果差异小,拐臂上下通孔载荷谱存在明显差异,拐臂疲劳寿命受限于其上下通孔,疲劳寿命可达6万次。
Operating mechanism defects are commonly seen in high-voltage circuit breaker maintenance.Therefore, the research on mechanical characteristics of circuit breaker is of significance to reliability improvement. A multi-rigid-body mechanical model and a rigid-flexible mechanical model are built following the CT26-252 spring operating mechanism to simulate the movement of the operating mechanism during opening and closing. The differences between the models are compared, and the precision of the models are verified by experimental data. Finally, mechanical stress and strain distribution of the crank arm are calculated for fatigue life analysis. The results show that the mechanical model for the CT26-252 spring operating mechanism can accurately simulate the actual operation of the operating mechanism of the circuit breaker, and due to the small strain of the mechanism parts, the calculation results of the multi-rigid-body mechanical model and the rigid-flexible model are the same; there are evident differences between load spectrums of upper and lower plating through holes that set a limit on the crank arm fatigue life of 60 thousand times.
关键词(KeyWords):
断路器;弹簧机构;动力学仿真;疲劳寿命
circuit breaker;spring mechanism;mechanical simulation;fatigue life
基金项目(Foundation): 中国南方电网有限责任公司科技项目(GDKJXM20180154)
作者(Author):
王增彬,张拓,姚聪伟,孙帅,王立军
WANG Zengbin,ZHANG Tuo,YAO Congwei,SUN Shuai,WANG Lijun
DOI: 10.19585/j.zjdl.202105014
参考文献(References):
- [1]邓赟,武建文,金鑫晨,等.基于高压断路器电机操动机构的位移分段控制策略[J].电工技术学报,2018,33(15):3586-3595.
- [2]林琳,陈志英.基于粗糙集神经网络和振动信号的高压断路器机械故障诊断[J].电工技术学报,2020,35(增刊1):277-283.
- [3]关永刚,杨元威,钟建英,等.高压断路器机械故障诊断方法综述[J].高压电器,2018,54(7):10-19.
- [4]李建基.高压断路器可靠性调查[J].电工电气,2010(6):58-59.
- [5]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.高压交流断路器:GB 1984—2014[S].北京:中国标准出版社,2015.
- [6]李自强,魏磊,韩大鹏,等.基于相空间重构的高压断路器机械故障诊断研究[J].电力系统保护与控制,2018,46(9):129-135.
- [7]黄绪勇,孙鹏,耿苏杰,等.基于关联规则和变权重系数的SF6高压断路器状态综合评估[J].电力系统保护与控制,2018,46(2):50-56.
- [8]王竞,夏加富,刘晓晖,等.牵引变电站直流断路器机械状态监测与故障诊断研究[J].电力系统保护与控制,2020,48(1):33-40.
- [9]李增刚.ADAMS入门详解与实例[M].2版.北京:国防工业出版社,2014:1-3.
- [10]WANG L J,ZHANG X,DENG J,et al.Research progress of model of vacuum arc and anode activity under axial magnetic fields[J].IEEE Transactions on Plasma Science,2019,47(8):3496-3507.
- [11]WANG L J,YANG Z,JIANG J,et al.Study of vacuum arc behavior under anode spot and anode plume modes[J].Applied Physics Letters,2019,115(1):014101.
- [12]YOO W S,KIM S O,SOHN J H.Dynamic analysis and design of a high voltage circuit breaker with spring operating mechanism[J].Journal of Mechanical Science and Technology,2007,21(12):2101-2107.
- [13]杨秋玉,彭彦卿,庄志坚.基于ADAMS的高压断路器弹簧机构动力学仿真与故障分析[J].高压电器,2018,54(6):67-73.
- [14]蔡笋,周展帆,孟凡刚,等.断路器操动机构虚拟样机建模及其故障仿真[J].广东电力,2016,29(7):78-82.
- [15]RONG M,JIA S,WANG X,et al.Theoretical and experimental analyses of the mechanical characteristics of a medium-voltage circuit breaker[J].IEE Proceedings-Sci ence,Measurement and Technology,2005,152(2):45-49.
- [16]刘力欣.基于仿真分析对重载汽车变速齿轮轴多轴疲劳寿命预测研究[D].杭州:浙江大学,2016:4-9.
- [17]王晓军,陈正馨,许文良.万能式断路器双刀轴承冲击疲劳寿命仿真与试验研究[J].电器与能效管理技术,2019(7):66-68.
- [18]高振奎,秦晓宇,马晓红,等.550 kV断路器用密封杆疲劳分析及试验研究[J].机电工程,2018,35(2):158-161.
- [19]林莘,宋立峰,李永祥,等.真空断路器新型电机操动机构的多体动力学仿真[J].电网技术,2012,36(3):76-80.
- [20]黎小峰,巫世晶,李小勇,等.高压断路器操动机构动力学特性联合仿真研究[J].华中科技大学学报(自然科学版),2019,47(2):70-75.
- [21]赵伟涛,党德旺,弟泽龙,等.弹簧机构用缓冲器优化设计与疲劳寿命分析[J].高压电器,2017,53(8):55-60.