基于业扩报装的月度负荷预测A Monthly Load Forecasting Method Based on Business Expansion and Installation
龙厚印,刘卫东,黄锦华,李黎
LONG Houyin,LIU Weidong,HUANG Jinhua,LI Li
摘要(Abstract):
随着我国经济进入新常态,产业结构调整加大了电力中短期负荷预测难度。采用支持向量机法、业扩增量调整法、温度调整法和K-L信息量法,充分考虑温度、经济等主导因素的影响,使用2007—2015年业扩报装数据,建立训练样本,利用历史数据检验模型的效性,并与其他方法进行比较,剖析了2016年下半年浙江省月度负荷。结果表明所选方法选取合理,预测结果相对较优。
With China′ s economy entering a new normal, industrial restructuring makes medium and shortterm load forecasting more difficult. The paper adopts support vector machine method, business expansion and installation adjustment method, temperature regulation method, K-L information and completely takes important influencing factors including temperature and economy into account; besides, it uses business expansion and installation data from 2007 to 2015 to acquire training sample and compares with other methods to analyze monthly load in Zhejiang province in the second half of 2016. The result implies that the methods are reasonable and superior in prediction.
关键词(KeyWords):
业扩报装;支持向量机;负荷预测
business expansion and installation;support vector machine;load forecasting
基金项目(Foundation):
作者(Author):
龙厚印,刘卫东,黄锦华,李黎
LONG Houyin,LIU Weidong,HUANG Jinhua,LI Li
DOI: 10.19585/j.zjdl.2016.12.003
参考文献(References):
- [1]刘晨晖.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出版社,1987.
- [2]王锡凡.电力系统规划基础[M].北京:中国电力出版社,1994.
- [3]李春祥,牛东晓,孟丽敏.基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型[J].电网技术,2009,33(2):99-104.
- [4]何川,舒勤,贺含峰.ICA特征提取与BP神经网络在负荷预测中的应用[J].电力系统及其自动化学报,2014,26(8):40-46.
- [5]刘文颖,门德月,梁纪峰,等.基于灰色关联度与LSSVM组合的月度负荷预测[J].电网技术,2012,36(8):228-232.
- [6]吴钰,王杰.基于加权最小二乘支持向量机的月度负荷预测[J].水电能源科学,2012,30(5):174-177.