基于改进EWT的低频快速断路器振动特性分析Vibration characteristic analysis of low-frequency fast circuit breakers based on improved EWT
张淼彬,王劭鹤,王丰华,陈孝信,赵琳
ZHANG Miaobin,WANG Shaohe,WANG Fenghua,CHEN Xiaoxin,ZHAO Lin
摘要(Abstract):
LFFCB(低频快速断路器)分合产生的剧烈振动可能影响其机械性能,但当前缺乏对其振动影响的评估手段,需提出表征LFFCB机械性能的振动特性测试与分析方法,提升其运行可靠性。为此,开展了LFFCB分合闸过程中的振动信号测试,基于改进EWT(经验小波变换)与Hilbert变换分析了振动信号的时频特征。结果表明,经改进频谱划分的EWT能更加准确地获取LFFCB分合闸过程中振动信号的多个模态分量,分合闸过程中振动信号不同位置处能量谱的分布特征存在明显差异。
The violent vibrations generated during switching of low-frequency fast circuit breakers(LFFCBs) can potentially impact their mechanical performance. However, there is currently a lack of assessment methods for evaluating the effects of these vibrations. It is necessary to introduce an approach for vibration characteristic testing and analysis that characterizes the mechanical performance of LFFCBs to improve their operational reliability. To this end, the vibration signal test of LFFCBs during the switching process is carried out, and the time-frequency characteristics of the vibration signal are analyzed based on the improved empirical wavelet transform(EWT) and Hilbert transform. The findings indicate that the EWT with spectrum partitioning being improved can more accurately obtain multiple modal components of the vibration signal during the LFFCB switching. Furthermore, there are significant differences in the distribution characteristics of the energy spectrum at different locations of the vibration signal.
关键词(KeyWords):
柔性低频交流输电;低频快速断路器;振动信号;经验小波变换;Hilbert能量谱
flexible low-frequency AC transmission;low-frequency fast circuit breaker;vibration signal;empirical wavelet transform;Hilbert energy spectrum
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS220007)
作者(Author):
张淼彬,王劭鹤,王丰华,陈孝信,赵琳
ZHANG Miaobin,WANG Shaohe,WANG Fenghua,CHEN Xiaoxin,ZHAO Lin
DOI: 10.19585/j.zjdl.202312004
参考文献(References):
- [1]阳熹,汤翔,李炬添,等.海上风电低频主变压器特性分析及技术展望[J].南方能源建设,2023,10(5):139-148.YANG Xi,TANG Xiang,LI Jutian,et al.Characteristics analysis and technical prospect of low-frequency main transformer for offshore wind power[J].Southern Energy Construction,2023,10(5):139-148.
- [2]黄晓尧,谢瑞,裘鹏,等.远海风电两种送出方案的经济性评估[J].浙江电力,2022,41(7):1-7.HUANG Xiaoyao,XIE Rui,QIU Peng,et al. Economic evaluation of two transmission methods for long-distance offshore wind power[J].Zhejiang Electric Power,2022,41(7):1-7.
- [3]华文,林进钿,裘鹏,等.柔性低频输电高频谐振风险评估及抑制方法研究[J].浙江电力,2022,41(10):87-96.HUA Wen,LIN Jintian,QIU Peng,et al.Research on a risk evaluation and suppression method for high-frequency resonance of flexible low-frequency transmission[J].Zhejiang Electric Power,2022,41(10):87-96.
- [4]马志华,宫瑞磊,李志兵,等.一种用于低频输电系统的快速断路器:CN114360975A[P].2022-04-15.
- [5]靳北彪.传动机构:CN106870673A[P].2017-06-20.
- [6]赵国亮,陈维江,邓占锋,等.柔性低频交流输电关键技术及应用[J].电力系统自动化,2022,46(15):1-10.ZHAO Guoliang,CHEN Weijiang,DENG Zhanfeng,et al. Key technologies and application of flexible lowfrequency AC transmission[J]. Automation of Electric Power Systems,2022,46(15):1-10.
- [7]林进钿,倪晓军,裘鹏.柔性低频交流输电技术研究综述[J].浙江电力,2021,40(10):42-50.LIN Jintian,NI Xiaojun,QIU Peng. Review of flexible low-frequency AC transmission technology[J]. Zhejiang Electric Power,2021,40(10):42-50.
- [8] GILLES J.Empirical wavelet transform[J].IEEE Transactions on Signal Processing,2013,61(16):3999-4010.
- [9] CHAUHAN K,REDDY M V,SODHI R. A novel distribution-level phasor estimation algorithm using empirical wavelet transform[J].IEEE Transactions on Industrial Electronics,2018,65(10):7984-7995.
- [10] KALRA M,KUMAR S,DAS B.Seismic signal analysis using empirical wavelet transform for moving ground target detection and classification[J].IEEE Sensors Journal,2020,20(14):7886-7895.
- [11]栗蕴琦,林建辉,李倩.改进的EWT方法在轴承故障诊断中的应用[J].机械设计与制造,2020(5):83-87.LI Yunqi,LIN Jianhui,LI Qian.Application of improved EWT method in bearing fault diagnosis[J].Machinery Design&Manufacture,2020(5):83-87.
- [12]罗烨钶,陈永高,李升才.基于经验小波变换-噪声辅助分析的桥梁信号降噪方法[J].振动与冲击,2022,41(21):246-256.LUO Yeke,CHEN Yonggao,LI Shengcai.Bridge signal denoising method based on empirical wavelet transformnoise-aided analysis[J]. Journal of Vibration and Shock,2022,41(21):246-256.
- [13]罗小燕,戴聪聪,程铁栋,等.基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J].化工学报,2020,71(3):1264-1277.LUO Xiaoyan,DAI Congcong,CHENG Tiedong,et al.Load identification method of ball mill based on improved EWT multi-scale entropy and KELM[J].CIESC Journal,2020,71(3):1264-1277.
- [14]王昌明,张征,李峰,等.改进经验小波变换的齿轮箱故障诊断新方法与应用[J].噪声与振动控制,2018,38(5):167-172.WANG Changming,ZHANG Zheng,LI Feng,et al. A new method and its application for fault diagnosis of gearboxes based on improved empirical wavelet transform[J].Noise and Vibration Control,2018,38(5):167-172.
- [15]杨耿杰,许晔,高伟,等.基于能量谱相似度自适应聚类的配电网接地故障区段定位方法[J].电力自动化设备,2021,41(3):25-32.YANG Gengjie,XU Ye,GAO Wei,et al.Grounding fault section location method of distribution network based on adaptive clustering of similarities between energy spectra[J].Electric Power Automation Equipment,2021,41(3):25-32.
- [16]李舒适,王丰华,耿俊秋,等.基于优化VMD的高压断路器机械状态检测[J].电力自动化设备,2018,38(11):148-154.LI Shushi,WANG Fenghua,GENG Junqiu,et al. Mechanical state detection of high voltage circuit breaker based on optimized VMD algorithm[J]. Electric Power Automation Equipment,2018,38(11):148-154.