考虑空间相关性的分布式光伏发电出力预测及误差评价指标研究Distributed Photovoltaic Power Generation Output Prediction Based on Spatial Correlation and Error Evaluation Indexes
严华江,章坚民,胡瑛俊,张力行,焦田利,闻安
YAN Huajiang,ZHANG Jianmin,HU Yingjun,ZHANG Lixing,JIAO Tianli,WEN An
摘要(Abstract):
对于待预测的分布式光伏电站,基于已提出的大规模区域光伏分群方法,提出了筛选良好空间相关性光伏电站群的光伏发电出力预测方法。首先,对待预测电站的出力数据进行了天气类型划分;其次,选择与待预测电站具有相关关系的光伏电站作为相关性从站,并采取ARIMA模型识别待预测电站与从站之间的时间、空间关系,继而对待预测电站的出力进行预测;然后,通过多种预测误差指标对比,提出了更符合光伏预测的误差评价指标,即引用误差,以突显高功率输出的预测精度;最后,通过典型电站以及整个区域里所有分布式光伏用户的滚动预测和误差分析,证明了所提方法的普遍适用性。
Based on the proposed large-scale regional PV clustering method, this paper proposes a photovoltaic(PV) power generation output power prediction method screening PV power plant with spatial correlation for the distributed PV power stations to be predicted. Firstly, the output power data of the power station to be predicted is classified according to the weather types; secondly, a photovoltaic power station correlated to power stations to be predicted is selected as a slave station, and ARIMA model is employed to identify the time and spatial relationship between the station to be predicted and the slave station, and predict the output power of the station to be predicted; thirdly, by comparison of various prediction error indexes, an error evaluation index more suitable for PV prediction, namely the quoted error, is proposed to highlight the prediction precision of high-power output. Finally, the universal applicability of the method is proved by rolling forecast and error analysis of all PV consumers in typical substation and all the regions.
关键词(KeyWords):
大规模分布式用户光伏;功率预测;光伏分群;空间相关性;误差评价指标
large-scale distributed PV;power prediction;PV clustering;spatial correlation;error evaluation indexes
基金项目(Foundation): 国家自然科学基金(51677047);; 国网浙江省电力有限公司科技项目(CTZB-F171201CWB)
作者(Author):
严华江,章坚民,胡瑛俊,张力行,焦田利,闻安
YAN Huajiang,ZHANG Jianmin,HU Yingjun,ZHANG Lixing,JIAO Tianli,WEN An
DOI: 10.19585/j.zjdl.202003009
参考文献(References):
- [1]王斯成.分布式光伏发电政策现状及发展趋势[J].太阳能,2013(8):8-19.
- [2]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
- [3]窦晓波,常莉敏,倪春花,等.面向分布式光伏虚拟集群的有源配电网多级调控[J].电力系统自动化,2018,42(3):21-31.
- [4]王洪坤,葛磊蛟,李宏伟,等.分布式光伏发电的特性分析与预测方法综述[J].电力建设,2017,38(7):1-9.
- [5]张雪莉,刘其辉,马会萌,等.光伏电站输出功率影响因素分析[J].电网与清洁能源,2012,28(5):75-81.
- [6]胥芳,童建军,蔡世波,等.面向分布式光伏超短期功率预测的云团特征建模[J].太阳能学报,2016,37(7):1748-1755.
- [7]DEV S,LEE Y H,WINKLER S.Color-based segmentation of Sky/cloud images from ground-based cameras[J].IEEE Journal of Selected Topics in Applied Earth Observations&Remote Sensing,2017,10(1):231-242.
- [8]朱想,居蓉蓉,程序,等.组合数值天气预报与地基云图的光伏超短期功率预测模型[J].电力系统自动化,2015,39(6):4-10.
- [9]COLAK I,YESILBUDAK M,GENC N,et al.Multi-period prediction of solar radiation using ARMA and ARIMA models[C]//IEEE,International Conference on Machine Learning and Applications. IEEE,2015.
- [10]DURRANI S P,BALLUFF S,WURZER L,et al.Photovoltaic yield prediction using an irradiance forecast model based on multiple neural networks[J].Journal of Modern Power Systems&Clean Energy,2018,6(2):255-267.
- [11]LI G,LIU Z,HE J,et al.Study on the generator forecasting of grid-connected PV power system based on multivariate linear regression model[J].Modern Electric Power,2011,28(2):43-48.
- [12]兰华,廖志民,赵阳.基于ARMA模型的光伏电站出力预测[J].电测与仪表,2011,48(2):31-35.
- [13]LI Y,WANG Z,NIU J.Forecast of power generation for rid-connected photovoltaic system based on grey theory and verification Model[C]//International Conference on Intelligent Control&Information Processing.IEEE,2013.
- [14]杜翠,徐晓波,刘宗歧,等.气象数据弱相关的光伏出力短期预测[J].现代电力,2015,32(6):1-6.
- [15]侯松宝,王侃宏,石凯波,等.基于相似日和主成分分析的光伏发电系统短期出力预测[J].可再生能源,2018,36(1):15-21.
- [16]李伟,王冰,陈献慧,等.基于气象因子权重相似日的短期光伏功率预测[J].广东电力,2018,31(4):59-64.
- [17]叶林,赵永宁.基于空间相关性的风电功率预测研究综述[J].电力系统自动化,2014,38(14):126-135.
- [18]夏泠风,黎嘉明,赵亮,等.考虑光伏电站时空相关性的光伏出力序列生成方法[J].中国电机工程学报,2017,37(7):1982-1992.
- [19]张柏林,拜润卿,智勇,等.基于空间相关性的分布式光伏超短期预测技术研究[J].陕西电力,2017,45(5):22-26.
- [20]KHAJAVI N T,KUH A,SANTHANAM N P.Spatial correlations for solar PV generation and its tree approximation analysis[C]//Signal and Information Processing Association Summit and Conference.IEEE,2015.
- [21]于若英,陈宁,苗淼,等.考虑天气和空间相关性的光伏电站输出功率修复方法[J].电网技术,2017,41(7):2229-2236.
- [22]AGOUA X G,GIRARD R,KARINIOTAKIS G.Short-term spatio-temporal forecasting of photovoltaic power production[J].IEEE Transactions on Sustainable Energy,2017(99):1.
- [23]焦田利,章坚民,李熊,等.基于空间相关性的大规模分布式用户光伏分群方法[J].电力系统自动化,2019,43(21):97-105.
- [24]王飞,米增强,甄钊,等.基于天气状态模式识别的光伏电站发电功率分类预测方法[J].中国电机工程学报,2013,33(34):75-82.
- [25]张曦,康重庆,张宁,等.太阳能光伏发电的中长期随机特性分析[J].电力系统自动化,2014,38(6):6-13.
- [26]王建学,张耀,万筱钟.光伏出力特性指标体系和分类典型曲线研究[J].电力需求侧管理,2017,19(5):8-12.
- [27]崔和瑞,彭旭.基于ARIMAX模型的夏季短期电力负荷预测[J].电力系统保护与控制,2015,43(4):108-114.
- 大规模分布式用户光伏
- 功率预测
- 光伏分群
- 空间相关性
- 误差评价指标
large-scale distributed PV - power prediction
- PV clustering
- spatial correlation
- error evaluation indexes