碱液制氢电解槽动态阻抗建模Dynamic impedance modeling of an alkaline electrolyzer for hydrogen production
章寒冰,叶吉超,胡鑫威,唐毅博,黄慧,韩剑,程浩然
ZHANG Hanbing,YE Jichao,HU Xinwei,TANG Yibo,HUANG Hui,HAN Jian,CHENG Haoran
摘要(Abstract):
制氢系统建模对于降低能耗、研究综合能源系统中不同能流的交互特性具有重要的意义。分析碱性电解水制氢系统工作原理及物理特性,通过电化学方程和参数拟合,建立了碱液制氢电解槽静态模型。在静态模型的基础上,进一步分析得出电解槽负载的等效电路动态模型,通过采用直流加小干扰电压的方法得到电解槽的宽频域阻抗谱,利用傅里叶分析计算出模型中各阻抗参数的具体值。最后基于所得参数值在MATLAB环境下搭建模型进行仿真,通过与实测数据的比较验证了动态模型的准确性。
Modeling of the hydrogen production systerm is of great significance to energy consumption reduction and the study of the interaction characteristics of different flows in integrated energy systems. The working principle and physical characteristics of the alkaline electrolytic water hydrogen production system are analyzed. A static model of the alkaline electrolyzer for hydrogen production is established through electrochemical equations and parameter fitting. Based on the model, a dynamic model of the equivalent circuit of the electrolyzer load is analyzed. The broadband impedance spectrum(BIS) of the electrolyzer is obtained by using DC plus small disturbance voltage. The values of impedance parameters in the model are calculated by Fourier analysis. Finally, the values are simulated by a model established in MATLAB environment. The accuracy of the dynamic model is verified by in comparison to the measured data.
关键词(KeyWords):
电解槽建模;参数拟合;傅里叶分析;等效电路动态模型
electrolyzer modeling;parameter fitting;Fourier analysis;dynamic model of the equivalent circuit
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211LS21N006)
作者(Author):
章寒冰,叶吉超,胡鑫威,唐毅博,黄慧,韩剑,程浩然
ZHANG Hanbing,YE Jichao,HU Xinwei,TANG Yibo,HUANG Hui,HAN Jian,CHENG Haoran
DOI: 10.19585/j.zjdl.202305006
参考文献(References):
- [1] ULLEBERG O.Modeling of advanced alkaline electrolyzers:a system simulation approach[J].International Journal of Hydrogen Energy,2003,28(1):21-33.
- [2]张财志.太阳能电解水制氢系统的建模与仿真研究[D].成都:西南交通大学,2009.ZHANG Caizhi. Modeling and simulation for solarhydrgon system[D].Chengdou:Southwest Jiaotong University,2009.
- [3] JIANG Y,HUANG J,MAO B,et al.Inside solid-liquid interfaces:understanding the influence of the electrical double layer on alkaline hydrogen evolution reaction[J].Applied Catalysis B:Environmental,2021,293:120220.
- [4] SáNCHEZ M,AMORES E,ABAD D,et al.Aspen plus model of an alkaline electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy,2020,45(7):3916-3929.
- [5] SáNCHEZ M,AMORES E,RODRíGUEZ L,et al.Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J].International Journal of Hydrogen Energy,2018,43(45):20332-20345.
- [6] HENAO C,AGBOSSOU K,HAMMOUDI M,et al.Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser[J]. Journal of Power Sources,2014,250:58-67.
- [7] ZHANG H,LIN G,CHEN J.Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production[J].International Journal of Hydrogen Energy,2010,35(20):10851-10858.
- [8] DIéGUEZ P M,URSúA A,SANCHIS P,et al.Thermal performance of a commercial alkaline water electrolyzer:experimental study and mathematical modeling[J].International Journal of Hydrogen Energy,2008,33(24):7338-7354.
- [9] HAMMOUDI M,HENAO C,AGBOSSOU K,et al.New multi-physics approach for modelling and design of alkaline electrolyzers[J]. International Journal of Hydrogen Energy,2012,37(19):13895-13913.
- [10] LI Y F,DU Y,XIANG K L,et al.Planning model of integrated energy system considering P2G and energy storage[C]//2019 IEEE 3rd Conference on Energy Internet and Energy System Integration(EI2).Changsha,China.IEEE,2020:1246-1251.
- [11]于雪风,徐桂芝,刘其辉,等.含电转气及电转热的园区综合能源系统建模与优化运行[J].电力需求侧管理,2020,22(1):58-63.YU Xuefeng,XU Guizhi,LIU Qihui,et al.Modeling and optimal operation of park comprehensive energy system with electricity to gas and electricity to heat[J].Power Demand Side Management,2020,22(1):58-63.
- [12]蔡国伟,边育栋,孔令国,等.风/光制氢系统的同质化建模[J].中国电力,2020,53(10):59-65.CAI Guowei,BIAN Yudong,KONG Lingguo,et al.Homogenization modeling of wind/light hydrogen production system[J].Electric Power,2020,53(10):59-65.
- [13]张丽平.分布式风氢混合能源系统建模及功率分配策略研究[D].石家庄:河北科技大学,2020.ZHANG Liping.Research on modeling and power allocation strategy of distributed wind-hydrogen hybrid energy system[D].Shijiazhuang:Hebei University of Science and Technology,2020.
- [14] HAMMOUDI M,HENAO C,AGBOSSOU K,et al.New multi-physics approach for modelling and design of alkaline electrolyzers[J]. International Journal of Hydrogen Energy,2012,37(19):13895-13913.
- [15] DAVID M,ALVAREZ H,OCAMPO-MARTINEZ C,et al.Dynamic modelling of alkaline self-pressurized electrolyzers:a phenomenological-ba0sed semiphysical approach[J]. International Journal of Hydrogen Energy,2020,45(43):22394-22407.
- [16] BELMOKHTAR K, LAMINE DOUMBIA M,AGBOSSOU K. Dynamic model of an alkaline electrolyzer based an artificial neural networks[C]//2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies(EVER). Monte Carlo,Monaco.IEEE,2013:1-4.
- 电解槽建模
- 参数拟合
- 傅里叶分析
- 等效电路动态模型
electrolyzer modeling - parameter fitting
- Fourier analysis
- dynamic model of the equivalent circuit