浙江电力

2018, v.37;No.272(12) 74-81

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进区域候选网络的航拍图像中绝缘子目标识别方法
Insulator Identification Method in Aerial Images Based on the Improved Region Proposal Networks

翟永杰,李海森,吴童桐,苑朝
ZHAI Yongjie,LI Haisen,WU Tongtong,YUAN Chao

摘要(Abstract):

对航拍图像进行自动判别是无人机巡线后期的主要工作。为此提出一种改进的RPN(区域候选网络),以提高航拍图像中绝缘子目标的检测准确率。在绝缘子样本不完备的情况下,通过截取、旋转、镜像以及人工合成等方法对绝缘子训练样本进行扩充和完善;对人工标注的绝缘子样本的标注框进行聚类统计,获得标注框的宽高比分布情况,用于锚点框尺寸的初始化;对特征提取网络VGG16进行逐层分析,融合其中第二、三、五层的特征图,用于绝缘子目标识别;更改损失函数,实现动态调整正负样本的比例,从而解决训练过程中正负样本不均衡的问题。实验结果表明,改进后的RPN能够更有效地检测出航拍图像中的绝缘子目标,显著提高了检测的准确性。
In the process of unmanned aerial vehicle(UAV) inspection of transmission lines, automatic identification of aerial images is the main work in the later period of inspection. An improved RPN(region proposal network) is proposed to improve the identification accuracy of insulator targets in aerial images. In the case of incomplete insulator samples, the training samples are expanded and improved by intercepting, rotating,mirroring and artificial synthesis. Clustering statistics of labelled boxes of manually labelled insulator subsamples is carried out to obtain the distribution of width-height ratio of labelled boxes, which is used to initialize the dimension of anchor box. The feature extraction network VGG16 is analyzed layer by layer, and the second, third and fifth feature maps are fused for insulator target identification. By changing the loss function,the ratio of positive and negative samples can be dynamically adjusted to solve the problem of imbalance between positive and negative samples in the training process. Experimental results show that the improved RPN can detect the insulator targets more effectively in aerial images, and the accuracy is improved.

关键词(KeyWords): 绝缘子;航拍图像;目标检测;区域候选网络;卷积神经网络;训练样本;深度学习
insulator;aerial image;target detection;RPN;convolutional neural network;training sample;deep learning

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金资助项目(61773160)

作者(Author): 翟永杰,李海森,吴童桐,苑朝
ZHAI Yongjie,LI Haisen,WU Tongtong,YUAN Chao

DOI: 10.19585/j.zjdl.201812013

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享