考虑动态频率响应的火电-储能调频优化控制Optimal control of frequency modulation for thermal power and energy storage considering dynamic frequency response
马杰,于振博,郝元钊,张又文,李翠萍,全少理
MA Jie,YU Zhenbo,HAO Yuanzhao,ZHANG Youwen,LI Cuiping,QUAN Shaoli
摘要(Abstract):
针对高比例新能源电力系统中惯量降低、调频容量不足引发的频率安全问题,提出一种考虑动态频率响应的火电-储能优化调度控制策略。首先对新能源光伏并网场景建立电力系统动态频率响应模型,建立准确量化系统整体频率波动特征的表达式。然后建立含储能电源的电力系统调频模型,以系统运行经济性最优为目标,考虑系统运行约束与动态频率响应指标约束,采用Benders分解算法将求解模型分解为主、子问题进行模型迭代求解,完成火电机组与储能电站的调频功率分配。最后以西北某区域电网为算例进行仿真分析,结果表明所提策略较传统策略的调频成本降低了1.39%,验证了所提策略的有效性。
To address the frequency stability challenges caused by reduced inertia and insufficient frequency modulation capacity in power systems with a high proportion of renewable energy, this paper proposes an optimal dispatch and control strategy for thermal power and energy storage, with a focus on dynamic frequency response. First, a dynamic frequency response model is developed for a power system integrated with photovoltaic renewable energy, along with a formula to accurately quantify system-wide frequency fluctuation characteristics. Next, a frequency modulation model is established for a power system that incorporates energy storage. The goal is to optimize operational efficiency while considering the system's operational constraints and dynamic frequency response metrics.Benders decomposition is applied to decompose the problem into a master problem and subproblems, which are solved iteratively to achieve optimal frequency modulation power allocation between thermal power units and energy storage stations. Finally, simulations are conducted using a case study of a regional power grid in Northwest China.Results demonstrates that the proposed strategy reduces frequency modulation costs by 1.39% compared to traditional strategies, validating its effectiveness.
关键词(KeyWords):
新能源渗透率;频率响应;频率调节;调度策略
new energy penetration;frequency response;frequency modulation;scheduling strategy
基金项目(Foundation): 国网河南省电力公司科技项目(5217L0230013)
作者(Author):
马杰,于振博,郝元钊,张又文,李翠萍,全少理
MA Jie,YU Zhenbo,HAO Yuanzhao,ZHANG Youwen,LI Cuiping,QUAN Shaoli
DOI: 10.19585/j.zjdl.202503002
参考文献(References):
- [1] PAN Y L,DONG F.Dynamic evolution and driving factors of new energy development:fresh evidence from China[J].Technological Forecasting and Social Change,2022,176:121475.
- [2]张思,杨晓雷,阙凌燕,等.高比例光伏发电对浙江电网电力平衡的影响及应对策略[J].浙江电力,2022,41(11):9-16.ZHANG Si,YANG Xiaolei,QUE Lingyan,et al.The impact of high-proportion photovoltaic power generation on the power balance of Zhejiang power grid and its countermeasures[J].Zhejiang Electric Power,2022,41(11):9-16.
- [3]马伟明.关于电工学科前沿技术发展的若干思考[J].电工技术学报,2021,36(22):4627-4636.MA Weiming. Thoughts on the development of frontier technology in electrical engineering[J]. Transactions of China Electrotechnical Society,2021,36(22):4627-4636.
- [4]王凯丰,谢丽蓉,乔颖,等.电池储能提高电力系统调频性能分析[J].电力系统自动化,2022,46(1):174-181.WANG Kaifeng,XIE Lirong,QIAO Ying,et al.Analysis of frequency regulation performance of power system improved by battery energy storage[J].Automation of Electric Power Systems,2022,46(1):174-181.
- [5]王元元,刘航航,司君诚,等.电能量-调频联合市场中储能电站的参与策略分析[J].山东电力技术,2024,51(10):55-66.WANG Yuanyuan,LIU Hanghang,SI Juncheng,et al.Analysis on the strategies of energy storage stations participating in the electricity energy-regulation joint market[J].Shandong Electric Power,2024,51(10):55-66.
- [6]孙广宇,胡姝博,谢赐戬,等.基于典型风电场景的风储协同频率支撑容量优化配置[J].电力电容器与无功补偿,2024,45(6):108-118.SUN Guangyu,HU Shubo,XIE Cijian,et al.Optimization configuration of wind storage collaborative frequency support capacity based on typical wind power scenarios[J].Power Capacitor&Reactive Power Compensation,2024,45(6):108-118.
- [7]郑云平,亚夏尔·吐尔洪.基于VSG技术的风—光—储系统自适应调频控制策略研究[J].高压电器,2023,59(7):12-19.ZHENG Yunping,YAXAR·Turgun. Research on adaptive frequency modulation control strategy of wind-PVstorage system based on VSG technology[J].High Voltage Apparatus,2023,59(7):12-19.
- [8]李军徽,侯涛,穆钢,等.电力市场环境下考虑风电调度和调频极限的储能优化控制[J].电工技术学报,2021,36(9):1791-1804.LI Junhui,HOU Tao,MU Gang,et al. Optimal control strategy for energy storage considering wind farm scheduling plan and modulation frequency limitation under electricity market environment[J].Transactions of China Electrotechnical Society,2021,36(9):1791-1804.
- [9]李斌,夏琨,杨飞,等.考虑负荷聚合商的互联孤岛微网频率控制方法[J].电力电容器与无功补偿,2023,44(4):87-94.LI Bin,XIA Kun,YANG Fei,et al. Frequency control method of interconnected island microgrid considering load aggregator[J]. Power Capacitor&Reactive Power Compensation,2023,44(4):87-94.
- [10]李建林,胡笳扬,辛迪熙,等.基于参数自调节的电氢耦合系统调频控制策略研究[J].高压电器,2024,60(7):1-11.LI Jianlin,HU Jiayang,XIN Dixi,et al.Research on frequency modulation control strategy of electric-hydrogen coupling system based on parameter self-regulation[J].High Voltage Apparatus,2024,60(7):1-11.
- [11]周涛,向永建,杜可可,等.风机与储能参与电网调频协调控制技术综述[J].浙江电力,2024,43(7):45-55.ZHOU Tao,XIANG Yongjian,DU Keke,et al.An overview of a coordinated control technique for wind turbines and energy storage participating grid frequency regulation[J].Zhejiang Electric Power,2024,43(7):45-55.
- [12]李建林,屈树慷,马速良,等.电池储能系统辅助电网调频控制策略研究[J].太阳能学报,2023,44(3):326-335.LI Jianlin,QU Shukang,MA Suliang,et al. Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J]. Acta Energiae Solaris Sinica,2023,44(3):326-335.
- [13]胡泽春,谢旭,张放,等.含储能资源参与的自动发电控制策略研究[J].中国电机工程学报,2014,34(29):5080-5087.HU Zechun,XIE Xu,ZHANG Fang,et al.Research on automatic generation control strategy incorporating energy storage resources[J].Proceedings of the CSEE,2014,34(29):5080-5087.
- [14]李卫国,焦盘龙,刘新宇,等.基于变分模态分解的储能辅助传统机组调频的容量优化配置[J].电力系统保护与控制,2020,48(6):43-52.LI Weiguo,JIAO Panlong,LIU Xinyu,et al.Capacity optimization configuration of energy storage auxiliary traditional unit frequency modulation based on variational mode decomposition[J]. Power System Protection and Control,2020,48(6):43-52.
- [15]李翠萍,司文博,李军徽,等.基于集合经验模态分解和多目标遗传算法的火-多储系统调频功率双层优化[J].电工技术学报,2024,39(7):2017-2032.LI Cuiping,SI Wenbo,LI Junhui,et al.Two-layer optimization of frequency modulated power of thermal generation and multi-storage system based on ensemble empirical mode decomposition and multi-objective genetic algorithm[J].Transactions of China Electrotechnical Society, 2024,39(7):2017-2032.
- [16]王霞,应黎明,卢少平.考虑动态频率约束的一次调频和二次调频联合优化模型[J].电网技术,2020,44(8):2858-2867.WANG Xia,YING Liming,LU Shaoping.Joint optimization model for primary and secondary frequency regulation considering dynamic frequency constraint[J]. Power System Technology,2020,44(8):2858-2867.
- [17]高晖胜,訾鹏,黄林彬,等.能量约束下电力电子并网装备的最优频率控制[J].电力系统自动化,2020,44(17):9-18.GAO Huisheng,ZI Peng,HUANG Linbin,et al.Optimal frequency control of grid-connected power electronic devices with energy constraints[J]. Automation of Electric Power Systems,2020,44(17):9-18.
- [18]李世春,唐红艳,邓长虹,等.考虑频率约束及风电机组调频的风电穿透功率极限计算[J].电力系统自动化,2019,43(4):33-39.LI Shichun,TANG Hongyan,DENG Changhong,et al.Calculation of wind power penetration limit involving frequency constraints and frequency regulation of wind turbines[J].Automation of Electric Power Systems,2019,43(4):33-39.
- [19]赵珊珊,周勤勇,赵强,等.计及频率约束的风电最大接入比例研究[J].中国电机工程学报,2018,38(增刊1):24-31.ZHAO Shanshan,ZHOU Qinyong,ZHAO Qiang,et al.Research on maximum penetration level of wind generation considering frequency constraint[J]. Proceedings of the CSEE,2018,38(S1):24-31.
- [20]李杨,孙斌,吴峰,等.考虑动态频率约束的多能源电力系统日前-日内优化调度[J].太阳能学报,2024,45(2):406-415.LI Yang,SUN Bin,WU Feng,et al.Day-ahead and intraday optimal scheduling of multi-energy power systems considering dynamic frequency constraints[J].Acta Energiae Solaris Sinica,2024,45(2):406-415.
- [21]江一航,赵书强,韦子瑜,等.考虑区域间频率动态差异及频率响应全过程的分布鲁棒机组组合[J/OL].中国电机工程学报:1-16(2024-01-25)[2024-07-27]. http://kns.cnki. net/kcms/detail/11.2107. tm. 20240124.1802.009.html.JIANG Yihang,ZHAO Shuqiang,WEI Ziyu,et al.Distributionally robust unit commitment considering regional frequency dynamic differences and whole frequency response process[J/OL]. Proceedings of the CSEE:1-16(2024-01-25)[2024-07-27]. http://kns. cnki. net/kcms/detail/11.2107.tm.20240124.1802.009.html.
- [22]刘军,朱世祥,柳盼攀,等.考虑系统频率安全稳定约束的风储联合频率响应控制策略[J].电力系统保护与控制,2024,52(1):73-84.LIU Jun,ZHU Shixiang,LIU Panpan,et al.Coordinated control strategy for wind turbine and energy storage equipment considering system frequency safety and stability constraints[J].Power System Protection and Control,2024,52(1):73-84.