考虑用户行为的居民空调负荷需求响应Demand response of residential air conditioning load based on user behavior
刘衣萍,于鹤洋,王晨旭,马骏超,耿光超,江全元
LIU Yiping,YU Heyang,WANG Chenxu,MA Junchao,GENG Guangchao,JIANG Quanyuan
摘要(Abstract):
居民侧需求响应是保持电力系统源荷供需平衡的重要补充手段,但用户行为的不确定性导致难以实现需求响应的精准控制。以居民空调负荷为研究对象,建立了完整的需求响应分布式控制模型,提出了针对空调负荷未知性、多变性问题的解决方案。首先将需求响应中的负荷控制建模为一个多周期随机过程,将用户参与需求响应的行为抽象为马尔可夫链。然后基于线性回归和高斯过程建立用户热动力学模型,归纳并定义了居民住宅舒适度,计算得到马尔可夫转移概率;针对集中式控制存在的高成本、隐私性差等问题,以削峰需求响应为经典目标设计了分布式控制算法。最后采用实际负荷数据验证算法,取得了良好的削峰效果。
Residential side demand response is an important supplementary means to maintain the supply-demand balance of source-load in the power system. However, the uncertainty of user behavior makes it difficult to accurately control demand response. With residential air conditioning load being a research object, a complete distributed control model of demand response is established. A solution to unknown and variable air conditioning load is proposed. Firstly, the load control in demand response is modeled as a multi-period stochastic process, and the behavior of users' participation in demand response is abstracted as a Markov chain. Afterward, a thermodynamic model of the user is established based on linear regression and the Gaussian process to generalize and define residential comfort and calculate Markov transfer probability. For the problems of high cost and poor privacy of centralized control, a distributed control algorithm is designed with peak-shaving demand response as a classical object. Finally, the algorithm is validated using actual load data, achieving an excellent peak-shaving effect.
关键词(KeyWords):
需求响应;高斯过程;机器学习;分布式算法
demand response;Gaussian process;machine learning;distributed algorithm
基金项目(Foundation): 国网浙江省电力有限公司科技项目(B311DS210010)
作者(Author):
刘衣萍,于鹤洋,王晨旭,马骏超,耿光超,江全元
LIU Yiping,YU Heyang,WANG Chenxu,MA Junchao,GENG Guangchao,JIANG Quanyuan
DOI: 10.19585/j.zjdl.202303001
参考文献(References):
- [1] ASADINEJAD A,RAHIMPOUR A,TOMSOVIC K,et al.Evaluation of residential customer elasticity for incentive based demand response programs[J].Electric Power Systems Research,2018,158:26-36.
- [2] CHEN Y W,CHANG J M.EMaaS:cloud-based energy management service for distributed renewable energy integration[J].IEEE Transactions on Smart Grid,2015,6(6):2816-2824.
- [3]杨梓俊,丁小叶,陆晓,等.面向需求响应的变频空调负荷建模与运行控制[J].电力系统保护与控制,2021,49(15):132-140.YANG Zijun,DING Xiaoye,LU Xiao,et al.Inverter air conditioner load modeling and operational control for demand response[J].Power System Protection and Control,2021,49(15):132-140.
- [4] SHEN B,GHATIKAR G,LEI Z,et al.The role of regulatory reforms,market changes,and technology development to make demand response a viable resource in meeting energy challenges[J]. Applied Energy,2014,130:814-823.
- [5] MOHAGHEGHI S,RAJI N.Managing industrial energy intelligently:demand response scheme[J].IEEE Industry Applications Magazine,2014,20(2):53-62.
- [6] HOPKINS A S,WHITED M.Best practices in utility demand response programs[M].Synapse Energy Economics Inc.,Cambridge,MA,USA,2017.
- [7]张钦,王锡凡,王建学,等.电力市场下需求响应研究综述[J].电力系统自动化,2008,32(3):97-106.ZHANG Qin,WANG Xifan,WANG Jianxue,et al.Survey of demand response research in deregulated electricity markets[J].Automation of Electric Power Systems,2008,32(3):97-106.
- [8]张虹,王明晨,尹世诚,等.考虑用户消费偏好的分散式电采暖系统主从博弈优化方法[J/OL].电网技术:1-11[2022-11-03].DOI:10.13335/j.1000-3673.pst.2022.1795.
- [9]郑若楠,李志浩,唐雅洁,等.考虑居民用户参与度不确定性的激励型需求响应模型与评估[J].电力系统自动化,2022,46(8):154-162.ZHENG Ruonan,LI Zhihao,TANG Yajie,et al.Incentive demand response model and evaluation considering uncertainty of residential customer participation degree[J].Automation of Electric Power Systems,2022,46(8):154-162.
- [10] HAIDER HT,SEE OH,ELMENREICH W.A review of residential demand response of smart grid[J].Renewable and Sustainable Energy Reviews,2016,59:166-178.
- [11]范睿,孙润稼,刘玉田.考虑空调负荷需求响应的负荷恢复量削减方法[J].电工技术学报,2022,37(11):2869-2877.FAN Rui,SUN Runjia,LIU Yutian. A load restoration amount reduction method considering demand response of air conditioning loads[J]. Transactions of China Electrotechnical Society,2022,37(11):2869-2877.
- [12]宋梦,高赐威,苏卫华.面向需求响应应用的空调负荷建模及控制[J].电力系统自动化,2016,40(14):158-167.SONG Meng,GAO Ciwei,SU Weihua. Modeling and controlling of air-conditioning load for demand response applications[J]. Automation of Electric Power Systems,2016,40(14):158-167.
- [13] SHI Q X,CHEN C F,MAMMOLI A,et al.Estimating the profile of incentive-based demand response(IBDR)by integrating technical models and social-behavioral factors[J].IEEE Transactions on Smart Grid,2020,11(1):171-183.
- [14] AALAMI H A,PASHAEI-DIDANI H,NOJAVAN S.Deriving nonlinear models for incentive-based demand response programs[J]. International Journal of Electrical Power&Energy Systems,2019,106:223-231.
- [15] KLEINBAUM,DAVID G.Logistic regression[M].New York:Springer-Verlag,2002.
- [16] SCHULZ E,SPEEKENBRINK M,KRAUSE A.A tutorial on Gaussian process regression:Modelling,exploring,and exploiting functions[J].Journal of Mathematical Psychology,2018,85:1-16.
- [17] PARRISH B,GROSS R,HEPTONSTALL P. On demand:Can demand response live up to expectations in managing electricity systems[J].Energy Research&Social Science,2019,51:107-118.
- [18]关于印发《2021年全市有序用电和电力需求响应工作方案》的通知[EB].杭州市人民政府公报,2021.
- [19]浙江省发展和改革委员会.浙江省关于完善居民生活用电阶梯电价政策有关事项的通知[EB].杭州:浙江省发展和改革委员会,2021.
- [20]王少艳,侯瑞春,陶冶,等.面向智能家电与智能电网价值网融合的电力需求响应策略[J].制造业自动化,2021,43(5):1-4.WANG Shaoyan,HOU Ruichun,TAO Ye,et al.Power demand response strategy for the value net integration of smart home appliances and smart grid[J]. Manufacturing Automation,2021,43(5):1-4.