考虑多维气象数据与时间影响的风电功率区间预测Wind power interval forecasting based on multidimensional meteorological data and temporal effects
黄学勤,杨鹏举,赵耀,高少炜
HUANG Xueqin,YANG Pengju,ZHAO Yao,GAO Shaowei
摘要(Abstract):
现有基于预测误差的风电功率区间预测通常只考虑风速的影响,在建模过程中忽略了时间影响的问题。对此,提出一种结合N-HiTS(神经分层插值时间序列预测)点预测模型与GAM(广义可加模型)-DVQR(D-vine分位数回归)理论的风电功率区间预测模型。首先,采用N-HiTS对风电功率进行点预测并得到预测误差;然后,构建预测误差的DVQR模型,通过P样条GAM引入时间变量,对Copula参数对应的相关系数进行建模,得到预测误差的条件分位数;最后,根据误差的条件中位数对点预测值进行修正,并叠加误差条件分位数,得到风电的区间预测结果。以中国山西省某风电场实际数据集为例,验证了所提方法的有效性与优越性。
Existing wind power interval forecasting models based on forecasting errors typically consider only the influence of wind speed while neglecting the temporal effects in the modeling process. To address these challenges, this paper proposes a wind power interval forecasting model that combines the point forecasting model of neural hierarchical interpolation for time series forecasting(N-HiTS) with the theory of generalized additive model(GAM)-DVine copula based quantile regression(DVQR). First, the N-HiTS is employed to obtain point predictions of wind power and corresponding forecasting errors. Then, a DVQR model for the forecasting errors is constructed, where temporal variables are incorporated via P-splines GAM to model the correlation coefficients corresponding to Copula parameters, thereby obtaining conditional quantiles of the forecasting errors. Finally, the point predictions are corrected based on the conditional median of errors, and forecasting intervals are generated by superimposing the conditional quantiles of errors. Validation using actual operational data from a wind farm in Shanxi Province, China demonstrates the effectiveness and superiority of the proposed method.
关键词(KeyWords):
风电功率预测;广义可加模型;分位数回归;区间预测
wind power forecasting;GAM;quantile regression;interval forecasting
基金项目(Foundation): 国家自然科学基金(52377111)
作者(Author):
黄学勤,杨鹏举,赵耀,高少炜
HUANG Xueqin,YANG Pengju,ZHAO Yao,GAO Shaowei
DOI: 10.19585/j.zjdl.202601007
参考文献(References):
- [1]余建明,庞传军.考虑数据和模型不确定性的短期风电功率概率预测[J].电网技术,2022,46(5):1926-1933.YU Jianming,PANG Chuanjun. Short-term wind power probabilistic prediction considering data and model uncertainties[J]. Power System Technology,2022,46(5):1926-1933.
- [2]冯振,阎俏,迟青青,等.综合能源网络建模与运维技术研究综述[J].山东电力技术,2024,51(5):9-18.FENG Zhen,YAN Qiao,CHI Qingqing,et al.A review of modeling,operation and maintenance technologies for multi-energy coupled integrated energy network[J].Shandong Electric Power,2024,51(5):9-18.
- [3]沈赋,曹旸,徐潇源,等.高比例可再生能源电力系统惯量预测方法研究综述[J].电力建设,2025,46(8):116-128.SHEN Fu,CAO Yang,XU Xiaoyuan,et al.A review of inertia prediction methods for power system with high penetration renewable energy sources[J].Electric Power Construction,2025,46(8):116-128.
- [4]王婷,张晶,高冲,等.绿证-碳市场互认抵消下综合能源系统优化调度[J].智慧电力,2025,53(2):104-110.WANG Ting,ZHANG Jing,GAO Chong,et al.Optimal scheduling of integrated energy system under mutual recognition and offset of green certificate and carbon market[J].Smart Power,2025,53(2):104-110.
- [5]朱琼锋,李家腾,乔骥,等.人工智能技术在新能源功率预测的应用及展望[J].中国电机工程学报,2023,43(8):3027-3048.ZHU Qiongfeng,LI Jiateng,QIAO Ji,et al. Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE,2023,43(8):3027-3048.
- [6]卢有飞,邹时容,刘璐豪,等.基于知识共享的高比例可再生能源系统发电控制[J].高压电器,2024,60(10):33-45.LU Youfei,ZOU Shirong,LIU Luhao,et al. Generation control of high percentage renewable energy systems based on knowledge sharing[J].High Voltage Apparatus,2024,60(10):33-45.
- [7]庞传军,尚学伟,张波,等.基于改进梯度提升算法的短期风电功率概率预测[J].电力系统自动化,2022,46(16):198-206.PANG Chuanjun,SHANG Xuewei,ZHANG Bo,et al.Short-term wind power probability prediction based on improved gradient boosting machine algorithm[J]. Automation of Electric Power Systems,2022,46(16):198-206.
- [8]胡宇晗,朱利鹏,李佳勇,等.融合深度误差反馈学习和注意力机制的短期风电功率预测[J].电力系统保护与控制,2024,52(4):100-108.HU Yuhan,ZHU Lipeng,LI Jiayong,et al. Short-term wind power forecasting with the integration of a deep error feedback learning and attention mechanism[J].Power System Protection and Control,2024,52(4):100-108.
- [9]肖白,张博,王辛玮,等.基于组合模态分解和深度学习的短期风电功率区间预测[J].电力系统自动化,2023,47(17):110-117.XIAO Bai,ZHANG Bo,WANG Xinwei,et al.Short-term wind power interval prediction based on combined mode decomposition and deep learning[J].Automation of Electric Power Systems,2023,47(17):110-117.
- [10]李炳胜,庞传军,程大闯.基于NGBoost的可解释风电功率概率预测[J].浙江电力,2023,42(3):28-36.LI Bingsheng,PANG Chuanjun,CHENG Dachuang. Interpretable wind power probabilistic prediction based on NGBoost[J].Zhejiang Electric Power,2023,42(3):28-36.
- [11]RAN X,XU C,MA L,et al.Wind power interval prediction with adaptive rolling error correction based on PSRBLS-QR[J].Energies,2022,15(11):4137.
- [12]WAN C,LIN J,WANG J H,et al.Direct quantile regression for nonparametric probabilistic forecasting of wind power generation[J]. IEEE Transactions on Power Systems,2017,32(4):2767-2778.
- [13]YU Y X,YANG M,HAN X S,et al. A regional wind power probabilistic forecast method based on deep quantile regression[J].IEEE Transactions on Industry Applications,2021,57(5):4420-4427.
- [14]BAZIONIS I K,KOUSOUNADIS-KNUDSEN M A,KONSTANTINOU T,et al. A WT-LUBE-PSO-CWC wind power probabilistic forecasting model for prediction interval construction and seasonality analysis[J].Energies,2021,14(18):5942.
- [15]TEWARI S,GEYER C J,MOHAN N. A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets[J].IEEE Transactions on Power Systems,2011,26(4):2031-2039.
- [16]YUAN X H,CHEN C,JIANG M,et al.Prediction interval of wind power using parameter optimized Beta distribution based LSTM model[J]. Applied Soft Computing,2019,82:105550.
- [17]杨宏,苑津莎,张铁峰.一种基于Beta分布的风电功率预测误差最小概率区间的模型和算法[J].中国电机工程学报,2015,35(9):2135-2142.YANG Hong,YUAN Jinsha,ZHANG Tiefeng.A model and algorithm for minimum probability interval of wind power forecast errors based on beta distribution[J]. Proceedings of the CSEE,2015,35(9):2135-2142.
- [18]刘燕华,李伟花,刘冲,等.短期风电功率预测误差的混合偏态分布模型[J].中国电机工程学报,2015,35(10):2375-2382.LIU Yanhua,LI Weihua,LIU Chong,et al.Mixed skew distribution model of short-term wind power prediction error[J]. Proceedings of the CSEE,2015,35(10):2375-2382.
- [19]林优,杨明,韩学山,等.基于条件分类与证据理论的短期风电功率非参数概率预测方法[J].电网技术,2016,40(4):1113-1119.LIN You,YANG Ming,HAN Xueshan,et al. Nonparametric approach for short-term probabilistic wind generation forecast based on conditional classification and evidence theory[J].Power System Technology,2016,40(4):1113-1119.
- [20]杨茂,董昊.基于数值天气预报风速和蒙特卡洛法的短期风电功率区间预测[J].电力系统自动化,2021,45(5):79-85.YANG Mao,DONG Hao.Short-term wind power interval prediction based on wind speed of numerical weather prediction and Monte Carlo method[J].Automation of Electric Power Systems,2021,45(5):79-85.
- [21]LI M L,YANG M,YU Y X,et al.A wind speed correction method based on modified hidden Markov model for enhancing wind power forecast[J].IEEE Transactions on Industry Applications,2021,58(1):656-666.
- [22]JOBST D,M??LLER A,GRO??J. D-vine-copula-based postprocessing of wind speed ensemble forecasts[J].Quarterly Journal of the Royal Meteorological Society,2023,149(755):2575-2597.
- [23]JOBST D,M??LLER A,GRO??J.D-Vine GAM copula based quantile regression with application to ensemble postprocessing[J]. arXiv preprint arXiv:2309.05603,2023.
- [24]张介,马赟,张旭鹏,等.基于聚类分析方法的风电场日前功率预测研究[J].浙江电力,2018,37(1):42-46.ZHANG Jie,MA Yun,ZHANG Xupeng,et al.Research on day-ahead power forecast of wind farm based on cluster analysis[J].Zhejiang Electric Power,2018,37(1):42-46.
- [25]胡文慧,苏欣,姜林,等.考虑预测误差时空相依性的短期风电功率概率预测[J].南方电网技术,2023,17(2):137-144.HU Wenhui,SU Xin,JIANG Lin,et al.Probabilistic prediction of short-term wind power considering the temporal and spatial dependence of prediction errors[J]. Southern Power System Technology,2023,17(2):137-144.
- [26]苏向敬,程子凡,聂良钊,等.基于AGCN-LSTM模型的海上风电场功率概率预测[J].电力系统自动化,2024,48(22):140-149.SU Xiangjing,CHENG Zifan,NIE Liangzhao,et al.Power probability prediction for offshore wind farm based on AGCN-LSTM model[J]. Automation of Electric Power Systems,2024,48(22):140-149.
- [27]BRUNINX K,DELARUE E. A statistical description of the error on wind power forecasts for probabilistic reserve sizing[J]. IEEE Transactions on Sustainable Energy,2014,5(3):995-1002.
- [28]CHALLU C,OLIVARES K G,ORESHKIN B N,et al.N-HiTS:neural hierarchical interpolation for time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2023,37(6):6989-6997.
- [29]KRAUS D,CZADO C.D-vine copula based quantile regression[J]. Computational Statistics&Data Analysis,2017,110:1-18.
- [30]兰飞,桑川川,梁浚杰,等.基于条件Copula函数的风电功率区间预测[J].中国电机工程学报,2016,36(增刊1):79-86.LAN Fei,SANG Chuanchuan,LIANG Junjie,et al.Wind power interval prediction based on conditional copula function[J]. Proceedings of the CSEE,2016,36(S1):79-86.
- [31]VATTER T,NAGLER T. Generalized additive models for pair-copula constructions[J].Journal of Computational and Graphical Statistics,2018,27(4):715-727.