计及风力资源的风电场出力研究Research on Output of a Wind Farm Considering Wind Resources
曹建伟,陈文进,沈诚亮,张若伊,张认,刘皓明
CAO Jianwei,CHEN Wenjin,SHEN Chengliang,ZHANG Ruoyi,ZHANG Ren,LIU Haoming
摘要(Abstract):
新能源出力与其资源环境在时间和空间上具有复杂关联特性。对此,分析了不同资源环境条件下新能源发电的时空相关性,构建新能源差异化出力模型。首先,采用主成分分析法确定新能源场站的资源主成分,并与表征新能源场站运行特性的自然出力特性指标相结合,生成新能源场站特征数据;通过改进K-means算法对新能源场站进行聚类,获得资源时空相关的新能源发电集群。然后,根据集群内各新能源场站历史出力数据,通过聚类分析构建不同环境条件的新能源差异化出力模型。最后,利用中国东南某地区的风电场实际环境与出力监测数据进行仿真分析,结果证明所提方法提升了新能源发电集群出力特性的相关性,且构建的差异化出力模型的误差水平优于典型日法。
The output of renewable power generation and its resources and environment are characterized by complex correlation in respect to time and space. The paper analyzes the spatiotemporal correlation of renewable energy under different resources and environmental conditions and builds differentiated output models of renewable energy power generation. Firstly,principal component analysis(PCA)is used to determine the principal components of the renewable energy sources in new energy stations. It combines with the natural output characteristic indexes that characterize the operating characteristics of new energy stations to generate their characteristics data. The improved Kmeans algorithm clusters the new energy stations to obtain the new energy generation clusters with the spatiotemporal correlation of resources. Secondly,based on the historical output data of each new energy station in the cluster,a new energy differential output model for different environmental conditions is constructed by cluster analysis. Finally,a simulation analysis is conducted using wind farms' actual environmental and output monitoring data in southeast China. The results demonstrate that the proposed method has improved the correlation between the output characteristics of new energy generation clusters and the error level of the constructed differentiated output model is higher than that of the typical daily method.
关键词(KeyWords):
新能源发电;资源相关;主成分分析;聚类算法;出力特性
renewable energy power generation;resources correlation;principal component analysis;clustering algorithm;output characteristics
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211UZ2000K4)
作者(Author):
曹建伟,陈文进,沈诚亮,张若伊,张认,刘皓明
CAO Jianwei,CHEN Wenjin,SHEN Chengliang,ZHANG Ruoyi,ZHANG Ren,LIU Haoming
DOI: 10.19585/j.zjdl.202206007
参考文献(References):
- [1]WAN C,LIN J,WANG J H,et al.Direct quantile regression for nonparametric probabilistic forecasting of wind power generation[J].IEEE Transactions on Power Systems,2017,32(4):2767-2778.
- [2]ZHOU J H,SHI P,GAN D Q,et al.Large-scale power system robust stability analysis based on value set approach[J].IEEE Transactions on Power Systems,2017,32(5):4012-4023.
- [3]薛禹胜,雷兴,薛峰,等.关于风电不确定性对电力系统影响的评述[J].中国电机工程学报,2014,34(29):5029-5040.
- [4]EKSTR?M J,KOIVISTO M,MELLIN I,et al.A statistical model for hourly large-scale wind and photovoltaic generation in new locations[J].IEEE Transactions on Sustainable Energy,2017,8(4):1383-1393.
- [5]卓振宇,张宁,谢小荣,等.高比例可再生能源电力系统关键技术及发展挑战[J].电力系统自动化,2021,45(9):171-191.
- [6]康重庆,姚良忠.高比例可再生能源电力系统的关键科学问题与理论研究框架[J].电力系统自动化,2017,41(9):2-11.
- [7]YANG Y,WU W C,WANG B,et al.Optimal decomposition of stochastic dispatch schedule for renewable energy cluster[J].Journal of Modern Power Systems and Clean Energy,2021,9(4):711-719.
- [8]PREDA T N,UHLEN K,NORDG?RD D E.Clustering Distributed Generation using the instantaneous Euclidean Distance in polar coordinates[C]//IEEE PES ISGT Europe 2013.October 6-9,2013,Lyngby,Denmark.IEEE,2013:1-5.
- [9]COTILLA-SANCHEZ E,HINES P D H,BARROWSC,et al.Multi-attribute partitioning of power networks based on electrical distance[J].IEEE Transactions on Power Systems,2013,28(4):4979-4987.
- [10]李翠萍,东哲民,李军徽,等.配电网分布式储能集群调压控制策略[J].电力系统自动化,2021,45(4):133-141.
- [11]李翠萍,东哲民,李军徽,等.提升配电网新能源消纳能力的分布式储能集群优化控制策略[J].电力系统自动化,2021,45(23):76-83.
- [12]丁明,刘先放,毕锐,等.采用综合性能指标的高渗透率分布式电源集群划分方法[J].电力系统自动化,2018,42(15):47-52.
- [13]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9.
- [14]LIANG J K,TANG W Y.Scenario reduction for stochastic day-ahead scheduling:a mixed autoencoder based timeseries clustering approach[J].IEEE Transactions on Smart Grid,2021,12(3):2652-2662.
- [15]管霖,周保荣,文博,等.多风电场功率时间序列的时空相关性统计建模和运行模拟方法[J].电网技术,2021,45(1):30-39.
- [16]郑可轲,牛玉广.大规模新能源发电基地出力特性研究[J].太阳能学报,2018,39(9):2591-2598.
- [17]罗庆,晁勤,王一波,等.基于场景划分方法的风光出力耦合特性机理[J].电力自动化设备,2014,34(8):42-46.
- [18]姚剑峰,凌静,曲立楠,等.基于改进FCM聚类算法的清洁能源典型场景构建[J].电网与清洁能源,2019,35(4):76-82.
- [19]黄越辉,曲凯,李驰,等.基于K-means MCMC算法的中长期风电时间序列建模方法研究[J].电网技术,2019,43(7):2469-2476.
- [20]黄南天,王文婷,蔡国伟,等.计及复杂气象耦合特性的模块化去噪变分自编码器多源-荷联合场景生成[J].中国电机工程学报,2019,39(10):2924-2934.
- [21]ABDI H,WILLIAMS L J.Principal component analysis[J].Wiley Interdisciplinary Reviews:Computational Statistics,2010,2(4):433-459.
- [22]公丽艳,孟宪军,刘乃侨,等.基于主成分与聚类分析的苹果加工品质评价[J].农业工程学报,2014,30(13):276-285.
- [23]李响,牛赛.双碳目标下源-网-荷多层评价体系研究[J].中国电机工程学报,2021,41(增刊1):178-184.
- [24]刘文霞,何向刚,吴方权,等.新能源发电出力特性指标及其数据化应用[J].电网与清洁能源,2020,36(9):85-92.
- [25]李玥,穆维松,褚晓泉,等.基于改进量子粒子群的K-means聚类算法及其应用[J].控制与决策,2022,37(4):839-850.
- [26]游广增,汤翔鹰,胡炎,等.基于典型运行场景聚类的电力系统灵活性评估方法[J].上海交通大学学报,2021,55(7):802-813.
- [27]赵书强,要金铭,李志伟.基于改进K-means聚类和SBR算法的风电场景缩减方法研究[J].电网技术,2021,45(10):3947-3954.
- [28]王潇笛,刘俊勇,刘友波,等.采用自适应分段聚合近似的典型负荷曲线形态聚类算法[J].电力系统自动化,2019,43(1):110-118.
- [29]高海淑,张玉敏,吉兴全,等.基于场景聚类的主动配电网分布鲁棒综合优化[J].电力系统自动化,2020,44(21):32-41.
- [30]刘梦依,邱晓燕,张志荣,等.计及风光出力相关性的配电网多目标无功优化[J].电网技术,2020,44(5):1892-1899.
- [31]刘纯,吕振华,黄越辉,等.长时间尺度风电出力时间序列建模新方法研究[J].电力系统保护与控制,2013,41(1):7-13.
- [32]王建学,张耀,万筱钟,等.面向电网运行的新能源出力特性指标体系研究--风电出力特性指标体系[J].电网与清洁能源,2016,32(2):42-51.
- [33]曹阳,黄越辉,袁越,等.基于时序仿真的风光容量配比分层优化算法[J].中国电机工程学报,2015,35(5):1072-1078.
- [34]CHAI Y Y,GUO L,WANG C S,et al.Network partition and voltage coordination control for distribution networks with high penetration of distributed PV units[J].IEEETransactions on Power Systems,2018,33(3):3396-3407.
- 新能源发电
- 资源相关
- 主成分分析
- 聚类算法
- 出力特性
renewable energy power generation - resources correlation
- principal component analysis
- clustering algorithm
- output characteristics