浙江电力

2022, v.41;No.314(06) 45-53

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

计及风力资源的风电场出力研究
Research on Output of a Wind Farm Considering Wind Resources

曹建伟,陈文进,沈诚亮,张若伊,张认,刘皓明
CAO Jianwei,CHEN Wenjin,SHEN Chengliang,ZHANG Ruoyi,ZHANG Ren,LIU Haoming

摘要(Abstract):

新能源出力与其资源环境在时间和空间上具有复杂关联特性。对此,分析了不同资源环境条件下新能源发电的时空相关性,构建新能源差异化出力模型。首先,采用主成分分析法确定新能源场站的资源主成分,并与表征新能源场站运行特性的自然出力特性指标相结合,生成新能源场站特征数据;通过改进K-means算法对新能源场站进行聚类,获得资源时空相关的新能源发电集群。然后,根据集群内各新能源场站历史出力数据,通过聚类分析构建不同环境条件的新能源差异化出力模型。最后,利用中国东南某地区的风电场实际环境与出力监测数据进行仿真分析,结果证明所提方法提升了新能源发电集群出力特性的相关性,且构建的差异化出力模型的误差水平优于典型日法。
The output of renewable power generation and its resources and environment are characterized by complex correlation in respect to time and space. The paper analyzes the spatiotemporal correlation of renewable energy under different resources and environmental conditions and builds differentiated output models of renewable energy power generation. Firstly,principal component analysis(PCA)is used to determine the principal components of the renewable energy sources in new energy stations. It combines with the natural output characteristic indexes that characterize the operating characteristics of new energy stations to generate their characteristics data. The improved Kmeans algorithm clusters the new energy stations to obtain the new energy generation clusters with the spatiotemporal correlation of resources. Secondly,based on the historical output data of each new energy station in the cluster,a new energy differential output model for different environmental conditions is constructed by cluster analysis. Finally,a simulation analysis is conducted using wind farms' actual environmental and output monitoring data in southeast China. The results demonstrate that the proposed method has improved the correlation between the output characteristics of new energy generation clusters and the error level of the constructed differentiated output model is higher than that of the typical daily method.

关键词(KeyWords): 新能源发电;资源相关;主成分分析;聚类算法;出力特性
renewable energy power generation;resources correlation;principal component analysis;clustering algorithm;output characteristics

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211UZ2000K4)

作者(Author): 曹建伟,陈文进,沈诚亮,张若伊,张认,刘皓明
CAO Jianwei,CHEN Wenjin,SHEN Chengliang,ZHANG Ruoyi,ZHANG Ren,LIU Haoming

DOI: 10.19585/j.zjdl.202206007

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享