基于非参数贝叶斯谐波阻抗估计的谐波责任区分Division of Harmonic Responsibility Based on Nonparametric Bayesian Harmonic Impedance Estimation
江友华,刘子瑜,张煜,杨兴武,吴卫民
JIANG Youhua,LIU Ziyu,ZHANG Yu,YANG Xingwu,WU Weimin
摘要(Abstract):
线性回归法在背景谐波电压波动的情况下估计谐波阻抗有较大误差,其诸多改进方法又普遍具有局限性。为此,基于非参数贝叶斯估计提出一种普适性方法。将背景谐波电压视为隐变量,用GMM(高斯混合模型)建模,并指出GMM的参数在实际工程背景下的意义;将GMM参数、线性模型参数建模为狄利克雷过程混合模型,并推导出其后验分布;利用马尔科夫链-蒙特卡洛采样方法从后验分布中抽取样本,基于样本进行贝叶斯估计,求解谐波阻抗和背景谐波电压工况数,进而对谐波责任进行评估。将IEEE 14节点测试系统与实测案例结合进行仿真,通过非参数贝叶斯估计法与线性回归法仿真结果的对比,验证了非参数贝叶斯估计法的有效性。
Errors occur in harmonic impedance estimation by linear regression under the condition of background harmonic voltage fluctuations, but the improvements have their limitations. Therefore, a universal method based on non-parametric Bayesian estimation is proposed. The background harmonic voltage is regarded as a latent variable, and GMM(Gaussian mixture model) is used for modeling, and the significance of the parameters of the Gaussian mixture model in the actual engineering context is expounded. The Gaussian mixture model parameters and linear model parameters are modeled as Dirichlet process mixture models, and their posterior distributions are derived. The Markov chain monte Carlo sampling method is used to extract samples from the posterior distribution, and Bayesian estimation is performed based on the samples, the harmonic impedance and the number of background harmonic voltage conditions are solved, and then the harmonic responsibility is evaluated. The IEEE 14-nodes test system is combined with actual test cases for simulation, and the non-parametric Bayesian estimation method and linear regression method are compared to verify the effectiveness of the non-parametric Bayesian estimation method.
关键词(KeyWords):
隐变量;高斯混合模型;狄利克雷过程混合模型;马尔科夫链-蒙特卡洛采样;背景谐波电压工况;谐波责任区分
latent variable;Gaussian mixture model;Dirichlet process mixture model;Markov chain Monte Carlo;background harmonic voltage conditions;harmonic responsibility division
基金项目(Foundation): 国家自然科学基金项目(51877130);; 上海市科技创新行动计划项目(19DZ1205402)
作者(Author):
江友华,刘子瑜,张煜,杨兴武,吴卫民
JIANG Youhua,LIU Ziyu,ZHANG Yu,YANG Xingwu,WU Weimin
DOI: 10.19585/j.zjdl.202103009
参考文献(References):
- [1]肖湘宁,韩民晓,徐永海,等.电能质量分析与控制[M].北京:中国电力出版社,2004.
- [2]庄双勇,赵伟,何学农,等.超谐波引发的电能质量问题及相关研究[J].电测与仪表,2019,56(1):41-52.
- [3]崔红芬,徐昊,杨波,等.改善高占比光伏接入配电网电能质量的储能优化选配[J].电测与仪表,2019,56(24):104-108.
- [4]江友华,叶尚兴,黄志敏,等.基于决策树的复杂电网多谐波源监管[J].电测与仪表,2016,53(2):45-51.
- [5]BAUER T,LIPS H P,THIELE G,et al.Operational tests on HVDC thyristor modules in a synthetic test circuit for the sylmar east restoration project[J].IEEE Transactions on Power Delivery,1997,12(3):1151-1158.
- [6]张巍,杨洪耕.基于二元线性回归的谐波发射水平估计方法[J].中国电机工程学报,2004,24(6):54-57.
- [7]孙媛媛,尹志明.基于M估计稳健回归的多谐波源责任区分[J].中国电机工程学报,2012,32(31):166-173.
- [8]车权,杨洪耕.基于稳健回归的谐波发射水平估计方法[J].中国电机工程学报,2004,24(4):43-46.
- [9]黄舜,徐永海.基于偏最小二乘回归的系统谐波阻抗与谐波发射水平的评估方法[J].中国电机工程学报,2007,27(1):93-97.
- [10]贾秀芳,华回春,曹东升,等.基于复线性最小二乘法的谐波责任定量划分[J].中国电机工程学报,2013,33(4):149-155.
- [11]孟思雨,肖先勇,张逸,等.基于有效数据段选取的多谐波源责任划分方法[J].电网技术,2017,41(6):2006-2011.
- [12]贾秀芳,张韶光,华回春,等.部分线性核估计方法在谐波责任分摊问题中的应用[J].电力系统自动化,2015,39(3):63-68.
- [13]顾伟,邱海峰,尹香,等.基于波形匹配的谐波责任划分方法[J].电力系统自动化,2017,41(2):129-134.
- [14]丁同,陈红坤,吴斌,等.多谐波源定位及谐波责任量化区分方法综述[J].电力自动化设备,2020,40(1):19-30.
- [15]刘乾易,李勇,郭松,等.大功率电解整流系统背景谐波建模及谐波责任评估[J].中国科学:技术科学,2019,49(5):602-610.
- [16]BUSH C A.A semiparametric Bayesian model for randomised block designs[J].Biometrika,1996(83):275-286.
- [17]欧盟-亚洲电能质量项目中国合作组.用户电能质量测试评估与解决方案案例集[M].北京:中国电力出版社,2009.
- [18]GEMAN S,GEMAN D.Stochastic relaxation,Gibbs distri bution,and the bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
- [19]谢林枫,王红星,刘军成,等.基于电能质量约束的智能配电网分布式电源消纳能力研究[J].电网与清洁能源,2020,36(4):41-47.
- [20]赵卫国.多能交互系统关键节点电能质量改善措施[J].山西电力,2018(4):14-18.
- [21]王宇飞,徐琳.地铁牵引供电系统接入对电网电能质量影响分析[J].四川电力技术,2019(1):33-36.